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1

Introduction

Never mind, it’s only a small obstacle
– Rohinton Mistry (A fine balance)

Chromium, dipole dipole interactions and Bose Einstein condensation

The dipole dipole interactions

Most quantum gases’ characteristics (shape, density, excitations, stability, collisional prop-
erties...) are dictated by the nature and strength of interparticle interactions. These in-
teractions take numerous forms: contact interactions for example are short ranged and
isotropic, dipole dipole interactions (DDI) on the contrary are considered1 to be long ranged,
anisotropic and can be either attractive or repulsive.

V 12
dd = γd

4πr 3

(
d1.d2 −3

(d1.r)(d2.r)

r 3

)
(1)

Equation 1: The general form of the dipole dipole interaction between two dipole moments d1 and
d2 separated by r. The γd constant depends on the precise nature of the interaction at hand [1].

These peculiarities give rise to a plethora of interesting phenomena that have been studied
in different quantum simulation platforms [2][3][4]. These platforms can be broadly catego-
rized into dipolar electric and dipolar magnetic platforms.
Rydberg atoms, Rydberg molecules and heteronuclear molecules pertain to the former
whereas alkali atoms, highly magnetic atoms and magnetic molecules belong to the lat-
ter.

µ0µ
2
b

(ea0)2/ϵ0
≃ α2

4
(2)

Equation 2: Typical ratio between magnetic (≃µB , the Bohr magneton) and electric dipole moments
(≃ ea0). α ≃ 1

137 is the fine structure constant. Magnetic dipole moments are in general orders of
magnitude smaller than electric dipole moments

Chromium falls into the highly magnetic atoms category, hence called because their mag-
netic dipole moments are relatively high. For example erbium and dysprosium sport dipole
moments of 7 µb and 10 µB respectively whereas chromium has a 6 µB dipole moment, which
makes for dipole dipole interactions that are 36 times stronger than those at play in alkali
atoms such as cesium or rubidium (d = 1µb). The strength of these dipolar interactions can
be otherwise gauged using ϵdd, the dipolar parameter

1Depending on the point of view and dimensionality of the problem DDI can be seen as short or long
ranged, see [1]
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ϵCr
dd = add

a
= 0.16 (3)

Where

� add = γd m
12πħ2 is the so called dipolar length, it measures the absolute strength of the

dipole dipole interaction [5]

� a is the s-wave scattering length

Equation 3: The dipolar parameter ϵdd characterizes the relative strength of dipole dipole and
contact interactions and therefore, the behavior of the system when both kinds of interactions are
contributing. For example Bose Einstein condensates with ϵdd > 1 are unstable against 3D collapse
in spherical traps [5]. In the case of chromium, dipole dipole interactions are dominated by contact

interactions. For comparison ϵRb
dd = 0.007 while ϵHC n

dd = 240.

Still and as suggested by Eq. 2, when compared to other dipolar entities the interactions
between magnetic atoms remain relatively weak with typical coupling strengths ranging
from 10 and 103 Hz, whereas they reach values as high as 104 and 106 Hz for polar molecules
and Rydberg atoms respectively. This is however at the expanse of smaller coherence
times2: 1 µs for Rydberg atoms, 10 ms for polar molecules and 100 ms for magnetic atoms.
Moreover magnetic atoms experiments generally involve a greater number of constituents
(N ≈ 104 − 105) than other platforms, this natural scalability is complemented by great
collisional stability features which most molecule experiments for example still lack. All of
these characteristics represent important assets as far as quantum simulation (of itinerant
magnetism notably) and quantum computing are concerned. Details on these numbers and
more can be found in [8].

Bose Einstein condensation

The main isotope of the chromium atom is bosonic, it was first condensed in 2004 [9]. Bose
Einstein condensates (BECs) are peculiar states of matter characterized by the saturation of
excited bosonic particles’ spatial density within the thermodynamic limit (V →∞, N

V = cste
where V is the system size and N the number of particles). For spatial densities greater
than a certain threshold nex

max , all particles added to the system will condense into its
ground state.
The existence of the nex

max quantity is not systematic and depends on the particulars of
the Hamiltonian spectrum and the dimensionality of the problem at hand. When it exists
however, nex

max is in general an increasing function of the temperature, which is to say
that even though it would be increasingly hard to observe, the Bose Einstein condensation
phenomenon can, a priori, happen at any temperature and is not to be confused with the
more trivial accumulation of particles in the system’s lowest energy state which can occur
in the framework of Boltzmann’s statistics when kB T is smaller than the system’s typical
energy spacing between Hamiltonian eigenstates. This condensation criterion can also be
expressed in terms of phase space density:

2The numbers given for Rydberg atoms and molecules should be seen as lower bounds as much greater
coherence times have been demonstrated in recent experiments [6] [7]
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φ(0) = n(0)λ3
T >φC = 2.6 (4)

Where

� φ(0) is the phase space density at the minimum of the potential landscape

� n(0) is the spatial density at the minimum of the potential landscape

� λT =
√

2πħ2

mkB T is the de Broglie wavelength

� φc is the critical phase space density φc = ζ(3/2) where ζ is Riemann’s zeta function

Equation 4: Condensation criterion for a general 3D potential/trap V (r) in the so called semi-
classical approximation (kB T >> ħω where ω is the trap’s typical oscillation frequency) [10]. The
higher the phase space density, the higher the condensed particle fraction. The condensation phe-
nomenon exhibits other universal traits, for example, at transition, particles in the gas phase all

share the same entropy per particle s = ζ(5/2)
ζ(3/2)

5
2 k [11] p.293

The procedure leading to the condensation of the chromium atoms will be briefly described
in Chap. 1.

The chromium BEC physics [12] is however not the focus of the present work wherein we
will mainly study the interactions between chromium atoms trapped in optical lattices,
that is between chromium atoms which ultimately end up interacting through dipole dipole
interactions alone. This is the subject of the following section.

Chromium atoms in optical lattices and previous experimental obser-

vations

Chromium atoms in optical lattices

Chromium atoms trapped in optical lattices are a very rich physical system whose workings
- involving transport, contact and dipolar phenomena - make it a platform ideal for the
study of quantum magnetism. A most general description of this system is given by the
following Hamiltonian
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Ĥ = Ĥt + Ĥint (5)

Where

� Ĥt =−t
∑

〈i , j 〉,m
(ai

m)†a j
m describes spin dependent tunneling in the lattice’s Wannier ba-

sis. Here, ax
y (resp. (ax

y )†) is the annihilation (resp. creation) operator of a particle in
site x in the spin state y .

� Ĥint = 1

2

∑
k,l ,m,n
g ,h,i , j

U g ,h,i , j
k,l ,m,n(ai

l )†(a j
n)†ag

m ah
k , describes interaction between spin particles lo-

cated at sites g and h initially ending up at sites i and j . The strength of these

interactions are given by the U g ,h,i , j
k,l ,m,n parameters. Contact and dipole dipole interac-

tions alike are both captured by Ĥint

Equation 5: The Hamiltonian governing the evolution of an assembly of chromium atoms trapped
in an optical lattice

In the deep lattice limit, tunneling and superexchange-like processes can be neglected [1],
the Ĥ Hamiltonian then reduces to the dipole dipole interaction between all particles in the
lattice Ĥdd

3. The complexities of this remaining term are better understood when written
in its operatorial form

Ĥdd = ∑
i< j

Ĥ i j
dd = ∑

i< j

d 2

r 3
i j

[
Ŝz

i Ŝz
j +

1

2

(
Ŝ+

i .Ŝ−
j + Ŝ−

i Ŝ+
j

)
− 3

4

(
2zŜz

i + r−Ŝ+
i + r+Ŝ−

i

)(
2zŜz

j + r−Ŝ+
j + r+Ŝ−

j

)]
(6)

Where

� d 2 = µ0(gsµB )2

4π

� ri j is the distance between the (i , j ) pair

� (x, y , z) are the component of the unit ri j vector joining the two dipoles

� r± = x ± i y

� Ŝ± = Ŝx ± i Ŝ y

It can be seen from this equation that the dipole dipole interaction between two atoms is
the combination of three distinct physical processes

1. The elastic dipole dipole interaction or Ising term which does not change the internal
states (the spin projections on the quantization axis) of the atoms

Ĥ el
dd = d 2

r 3

(
1−3z2) Ŝz

1 Ŝz
2 (7)

2. The exchange term where the involved atoms exchange one unit of spin while con-
serving the total magnetization of the pair

Ĥ ex
dd =− d 2

4r 3

(
1−3z2)(Ŝ+

1 Ŝ−
2 + Ŝ−

1 Ŝ+
2

)
(8)

3And contact interactions for particles sharing the same lattice site!
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3. The relaxation terms which lead to exchange between spin and orbital angular mo-
menta, while concomitantly converting magnetic energy into kinetic energy.

Ĥ rel1

dd =−3d 2

4r 3 (r+)2Ŝ−
1 Ŝ−

2 +h.c.

Ĥ rel2

dd =−3d 2

2r 3 zr+ (
Ŝz

1 Ŝ−
2 + Ŝz

2 Ŝ−
1

)+h.c

(9)

Relaxation terms are somewhat troublesome, in that they are not conserving of the sam-
ple’s total magnetization (see appendix D). These terms however can be controlled and even
suppressed. In particular, off-site dipolar relaxation is inhibited by simply cranking up the
external magnetic field: as a matter of fact and despite the apparent 1

r 3 scaling, dipolar
relaxation is a localized interaction whose effective range is inversely proportional to the
square root of the external magnetic field [13]. In practice, given typical lattice spacings,
off-site dipolar relaxation is greatly reduced for magnetic fields above 10 mG.
On-site dipolar relaxation on the other hand can be suppressed by getting rid of any dou-
blons, that is, by getting rid of any pairs of particles that happen to have been loaded in the
same lattice site4, this can be done by promoting all the atoms in the most excited state
ms =±3 and forcing all on-site dipolar relaxation events to happen before the dynamics is
triggered for example.
This is exactly what was achieved by our team in previous experiments [15], wherein all of
tunneling, super exchange and dipolar relaxation could be neglected, the remaining Hamilto-
nian terms shaping together into what is known as the RMN or secular dipolar Hamiltonian
Ĥsec, an effective actualization of the XXZ Heisenberg model which is of particular interest
to the condensed matter and AMO communities.

Ĥsec = 1

2

∑
i , j

d 2

r 3
i j

(
1−3

z2

r 2
i j

)[
Ŝz

i Ŝz
j −

1

4

(
Ŝ+

i .Ŝ−
j + Ŝ−

i Ŝ+
j

)]

= 1

2

∑
i , j

d 2

r 3
i j

(
1−3cos2(θi j )

)[
Ŝz

i Ŝz
j −

1

4

(
Ŝ+

i .Ŝ−
j + Ŝ−

i Ŝ+
j

)] (10)

Where θi j is the angle between the polarizing magnetic field and the ri j vector.

Previous experimental observations

These endeavors have uncovered spin dynamics brought about by non local dipole dipole
interactions between atoms pinned to the nodes of a 3D anisotropic lattice initially prepared
in an excited coherent (or not [16]) spin state.
The dynamics in question was studied by monitoring the various spin populations of the
system. This evolution can be simulated using mean field methods. In the case at hand,
these theories predict that the evolution of any given spin in the lattice is dictated by its
interaction with the mean magnetic field BMF created by neighboring entities ??.
As it turns out, this kind of mean field expansions could not explain the experimental ob-
servations (for lattice experiments), which, on the other hand, were adequately described
by more involved GDTWA based algorithms which account for the inherently fluctuating5

nature of the spin vector.

4Contrary to fermionic statistics which allow for the preparation of dense band insulators with at most
one atom per lattice site [14], bosonic statistics allow for the presence of more than one particle within the
same lattice site, even in the polarized case.

5A feature that is intimately linked to quantum correlations as will be seen later
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Ĥ MF
sec =

N∑
i

BMF
i .Ŝi (11)

Equation 11: Mean field secular Hamiltonian. In this mean field paradigm, all kinds of spin fluctu-
ations δS = S−〈S〉 are neglected, as such each spin interacts with a mean magnetic field which is gen-

erated by the mean orientation of the spins BMF
i =−∑

j ̸=i
1
2

d 2

r 3
i j

(
1−3cos2(θi j )

){〈Sx
j 〉,〈S

y
j 〉,−2〈Sz

j 〉
}
[15]

For example, mean field simulations predicted a relatively pronounced and sustained oscil-
latory behavior of the spin populations (see Fig.1), a feature which was not observed neither
experimentally nor in the GDTWA simulations wherein the steady state was reached rela-
tively quickly.
These findings strongly hinted at the instrumental role played by quantum fluctuations in
our platform and their contribution to the thermalization process of the system that was
then studied, a system which could be considered to be mostly isolated.

Figure 1: Long-time evolution of state populations for [an initial tilt angle of the spins] θ = π
2 :

Data points are compared with corresponding best fitting GDTWA (solid lines...) and mean field
(thin dashed lines...) simulations. Image caption from [15]

Commonly accepted thermalization scenarios however generally emphasize the role of quan-
tum correlations and more specifically the role of entanglement rather than fluctuations per
se. The question arises then as to the precise relationship between quantum fluctuations
and quantum correlations. A question which we try to answer in the following section.

From quantum fluctuations to thermalization

Thermalization of pure isolated systems

In the case of isolated pure systems thermalization6, by which we mean their evolution to-
wards some kind of steady state, can be understood in the sense of the eigenstate thermal-
ization hypothesis which provides a set of mathematical conditions [17] under which some

6Pure systems undergoing unitary evolution remain pure
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quantum observables’7 expectation values (notably) evolve towards their micro-canonically
ascribed values, values which are seemingly independent of the exact initial state particu-
lars, despite the possibly unitary character of the system’s evolution [17]. Of course, the
observed evolution is still conditioned by the initial state’s energy, and other conserved
quantities.
Microscopically, this thermalization-like phenomenon supposedly stems from the ability of
quantum systems to act as their own reservoir: by coupling to the remainder of the system
that is considered, any given subsystem can thermalize through processes reminiscent of
the classical picture which involves coupling to external (particle, energy...) pools. More
general considerations [19] indicate however that these self-reservoirs are not limited to the
role of energy or particle sinks, their essential function is to provide any kind of quantum
degrees of freedom for their many components to get so entangled - See Table 1 - with that
no information about the initial state of the subsystem remains locally observable, put other-
wise, the spreading of quantum entanglement, or equivalently the individual decoherence of
the system’s subsystems, moves information about so that it becomes locally inaccessible,
leading, in time, to thermalization, in the sense described above.

Separable pure states Separable mixed states8

|Ψ〉 = ∣∣ψ1
〉⊗ ∣∣ψ2

〉
...⊗ ∣∣ψN

〉
ρ =∑N ′

i wi

[
⊗N

j ρ
i
j

]
Table 1: Quantum states are either pure or mixed. A quantum state is either factorable or non-
factorable. Both pure and mixed states can be factorable (or separable). We provide above the
mathematical expression for separable states of both natures. N is the number of subsystems which
are considered. N ′ is an arbitrary integer.

∣∣ψ j
〉
(resp. ρi

j ) is a pure state (resp. a mixed state)

describing the j th subsystem. The wi are positively valued probabilities. Entangled states are
all states which are not separable, this definition being agreed upon for distinguishable particles
at least9. Subsystems pertaining to a system that is in a entangled state cannot be described
independently of other subsystems, as such these subsystems can be said to be strongly correlated.

As is explained above, the thermalization of isolated systems seems to stem from entangle-
ment which refers to a specific kind 10 of quantum correlations. In the following sections we
will try to draw a clearer picture between quantum fluctuations and quantum correlations,
but before that a brief preamble on classical and classical quantum states.

7For a more detailed account on the systems and observables to which ETH applies, please refer to [18].
Integrable systems for example, that is those with too many conserved quantities and similarly those with
strong disorder in which many body localization is predicted to happen generally fail to thermalize.

9∑N wi = 1 otherwise this definition would be trivially true for all states as the definition of the tensor
product

9When it comes to indistinguishable particles, one might argue that the traditional separability criterion
does not adequately characterize entanglement. And it is true enough that the entangled character of some
bosonic symmetrized or fermionic antisymmetrized states is but an artifact of the ”surplus structure” that
comes with the symmetrization process. For example the state |↑〉1 |↓〉2 which describes two non entangled
distinguishable particles becomes when transposed to, say the bosonic case, entangled after symmetrization:
|↑〉1|↓〉2+|↓〉1|↑〉2p

2
. This surplus structure, |↓〉1 |↑〉2, is specific to the Hilbert space formalism [20]. In [21] such

states whose non-factorizability is induced by the (anti-)symmetrization process are termed tangled states.
The authors of [22] call into question the entangled character of such states as they show that they never
give rise to correlations that violate Bell’s inequalities and that they are fully compatible with local hidden-
variable models for example [23]. Other definitions of entanglement proposed for example in [24] also reject
the entangled character of tangled states.
10Non separability
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Classical quantum states

Imagine that Alice (resp. Bob) can generate orthogonal states |a〉 (resp. |b〉) with proba-
bility pa (resp. pb). The global state shared between Alice and Bob reads

ρC
AB =∑

a

∑
b

pa pb |a〉〈a|⊗ |b〉〈b| (12)

Where the C superscript stands for classical. The ρC
AB state is said to be classical because

it remains undisturbed under the action of local measurements of the form
∑

a |a〉〈a| or∑
b |b〉〈b|.

In the same manner we can devise states that are invariant under measurements solely
affecting Alice’s subspace. The scenario corresponding to these states is the following:
imagine that Alice produces a certain state |a〉 with probability pa (we assume that the
various states produced by Alice are orthogonal) which she transmits to Bob via a noisy
communication channel. In general for each state |a〉 generated by Alice, Bob will receive
a state of the form σB

a where σB
a is an |a〉 dependent mixed state. The final state shared by

Alice and bob can be written
ρ

CQ
AB =∑

a
pa |a〉〈a|⊗σB

a (13)

Where the CQ superscript stands for classical quantum. Notice that all classical states are
classical quantum states and that all classical quantum states are separable. On the other
hand not all separable states are classical quantum states [25], the difference boiling down
to the fact that for CQ states the |a〉 states should be orthogonal, which is not required for
separable states.

Classical states⊂Classical quantum states⊂ Separable states (14)

From quantum fluctuations of observables to quantum correlations: the quantum covariance

Quantum states are most generally described by statistical ensembles of the form ρ =∑
i pi

∣∣ψi
〉〈
ψi

∣∣, where pi is the probability of having prepared state
∣∣ψi

〉
. This prepara-

tion uncertainty induces incoherent fluctuations. In general however, measurements of a
quantum observable Ô will still display a certain amount of quantum or coherent fluctua-
tions even when the system is prepared in a pure state

∣∣ψi
〉
unless

∣∣ψi
〉
is an eingenstate

of Ô. When thermal equilibrium is reached, the amount of quantum fluctuations11 among
all other incoherent fluctuations can be quantified by the so called quantum variance. This
quantum variance can be defined mathematically in many ways one of which is given in [26]

11The zero point motion, which in the case of 4He prevents it from solidifying at atmospheric pressure
even at very low temperature, is a striking example of such quantum fluctuations



9

∆2
QÔ =∆2Ô −kB TχÔ (15)

where

� ∆2
QÔ is the quantum variance of observable Ô

� ∆2Ô is the total variance of observable Ô

� T is the temperature of the system

� χÔ is the static susceptibility of
〈

Ô
〉
with respect to a small perturbative field coupling

to observable Ô

Equation 15: The quantum variance quantifies the amount of coherent (or quantum) fluctuations of
the Ô observable. The proportionality between the temperature and the variance of the Ô observable
∆2Ô cannot be extended to quantum systems for which measurements results will in general display
a remnant variability event at zero temperature. As put in [26], the quantum variance encapsulates
the idea that two equivalent ways of looking at fluctuations in classical statistical mechanics (namely
fluctuations at equilibrium, and linear response to a perturbation) give different results when gener-
alized to quantum statistical mechanics, in violation of the classical fluctuation dissipation theorem

valid for classical systems at equilibrium.

For pure states the quantum variance coincides with the total variance as there are no
incoherent fluctuations in this case.
In statistics, correlations are derived from variances through the concept of covariance. If
X and Y are two random variables, we have

2cov(X ,Y ) =Var (X +Y )−Var (X )−Var (Y ) . (16)

In the same fashion, the quantum variance concept calls for a most intuitive definition of
quantum correlations as given by the quantum covariance:

2covQ
(
Ô A ,ÔB

)=∆2
Q

(
Ô A +ÔB

)−∆2
Q

(
Ô A

)−∆2
Q

(
ÔB

)
= 2

[
cov

(
Ô A ,ÔB

)−kB TχÔ A ,ÔB

] (17)

Where

� A and B form a bipartition of the whole system S that is considered.

� χÔ A ,ÔB
is the cross-susceptibility of the system

Equation 17: The quantum covariance quantifies the correlations between the coherent fluctuations
of observables Ô A and ÔB at thermal equilibrium [26]. Notice that much like the quantum variance,
and contrary to the quantum discord which will be presented shortly, the quantum covariance is

also an observable dependent quantity.

Strictly speaking the quantum covariance quantifies the correlations between the coherent
fluctuations of observables, however it also provides some degree of information as to the
nature of the state that is studied and as can be expected of such quantum correlations
measures, a non zero quantum covariance excludes classicality [26]:
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ρ
CQ
AB =⇒ covQ

(
Ô A ,ÔB

)= 0 ∀(Ô A ,ÔB ) (18)

Equation 18: A non zero quantum covariance proves that the state is not classical quantum. This
is also the kind of state that is excluded by a non zero quantum discord as will be seen shortly.

Naturally, the bigger the quantum covariance the further the ρAB state is from classicality,
and it can be shown that for thermal equilibrium states the quantum covariance cannot
exceed a certain threshold without the presence of entanglement [26].

ρ is separable =⇒ covQ
(
Ô A ,ÔB

)≤ 1

8
(omax −omi n)2 (19)

where the spectra of Ô A and ÔB are bounded by omax and omi n

Equation 19: To prove entanglement the cross-susceptibility of the system must be measured. Note
however that Ô A and ÔB do commute as they are defined on two disjoint subsystems.

As it turns out, this quite natural definition of quantum correlations -the quantum covariance-
is, a priori, independent of the generic information theoretic term associated to all those
kinds of correlations which are neither classical nor captured by entanglement. These in-
formation theoretic quantum correlations were characterized by Zurek and Ollivier in their
2001 paper [27] through the quantum discord quantity.

Another definition of quantum correlations: the information theory point of view

The term quantum discord expresses the fact that two classically identical definitions of
the mutual information (denoted in the following I and J) may differ when applied to
quantum systems, this observation is reminiscent of the definition of quantum variance
which denotes the invalidity of a classically valid thermodynamic identity (the classical
fluctuation dissipation theorem) when generalized to the quantum world. The first definition
of the mutual information between two random variables A and B reads:

IC (A,B) = H(A)+H(B)−H(A,B) (20)

Where :

� The C index indicates the classicality of the definition

� A and B are two random variables

� H(A) is the Shannon entropy : H =− ∑
a∈A

pa log(pa) with pa the probability of getting

outcome a amongst all possible outcomes forming space A

� H(A,B) is the joint entropy of the pair (A,B) : H =− ∑
(a,b)∈(A ,B)

pa,b log(pa,b) with pa,b

the joint probability of getting outcome a,b . It accounts for the total ignorance on
the pair (A,B)

Using the conditional entropy H(A | B) = H(A,B)−H(B), one can also write:

JC (A,B) = H(A)−H(A | B) = IC (A,B) (21)

The two forms of the mutual information coincide classically. For a bipartite system (A,B),
one can therefore think of classical correlations (i.e. the mutual information) in two equiv-
alent ways, either as the difference between the sum of local ignorances and the total
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ignorance of the system, or the amount of information one can glean on one subsystem
after measuring the other.
The first definition of the mutual information (20) can be extended to the quantum world
by use of the von Neumann entropy

IQ (A,B) = S(A)+S(B)−S(A,B) (22)

Where

� The Q index indicates the quantum character of the definition

� S(A) =−Tr(ρA log ρA) is the von Neumann entropy and ρA the reduced density matrix
of subsystem A tracing out on B

The generalization of definition 21 on the other hand poses certain issues as in quantum
information theory, measurements can disturb quantum systems [28], the S(A | B) statement
in particular is ambiguous until the to be measured states of B [27] are selected. In other
words, adapting the definition of Eq. 21 to the quantum world first requires the choice of
a set of local projective operators Π

j
B = ∣∣ jB

〉〈
jB

∣∣ corresponding to the measurement to be
done. Upon measurement, the state of the system is given by:

ρAB | j = 1

p j

(
I A ⊗Π j

B

)
ρAB

(
I A ⊗Π j

B

)
(23)

Where

� I A is the identity matrix of subsystem A

� p j is the probability of obtaining outcome j

The entropy of the whole system conditional to the measurement of B is then given by

S
(

AB
∣∣∣{Π j

B

})
=∑

j
p j S

(
ρA| j

)
(24)

Where

� ρA| j = TrB (ρAB | j ) is the reduced density matrix of subsystem A after measurement

All in all, the second definition of the mutual information becomes

JQ (A,B) = S (A)−S
(

AB
∣∣∣{Π j

B

})
(25)

In general both definitions of the quantum mutual information give out different results [27],
a mismatch commonly known as the quantum discord. More specifically JQ (A,B) ≤ IQ (A,B)
for all measurements performed on B unless the state ρAB is classical quantum (ρAB =
ρ

CQ
AB = ∑

a pa |a〉〈a| ⊗σi
B
a ). In this case choosing the appropriate measurement to perform

on B gives maximum information on A so that JQ (A,B) reaches the upper bound IQ (A,B) .

The minimal discrepancy that is otherwise found optimizing over the Π
j
B measurements is

called quantum discord:

D(A,B) = IQ (A,B)−max
Π

j
B

JQ (A,B) (26)

Equation 26: The computation of the quantum discord usually involves an optimization over the
set of measurement to be performed, which is unsuitable to generic experimental endeavors.
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Comparison between the quantum covariance and the quantum discord

� The quantum covariance has not been generalized to out of equilibrium frameworks
yet: to measure the quantum covariance, one should define a temperature and measure
susceptibilities which is not easily done for non stationary states. In this sense the
quantum discord is a more general quantity.

� The quantum covariance measures the degree of correlations between the coherent
fluctuations of observables. Ultimately the quantum discord - because of the opti-
mization process involved in its definition- is an observable independent quantity.

� Classicality of a given state ρAB can be ruled out by proving that the quantum covari-
ance of any two observables Ô A and ÔB is non zero. It is harder to exclude classicality
using quantum discord as almost all measurements are discordant, even for a classical
quantum state unless an optimal measurement is picked.

These two types of quantum correlations are not easily related to each other [26]. As for
entanglement it can be related to both: on the one hand entangled states are a subset of
the discordant set of states, which means that all entangled states are discordant. On the
other hand, much like discord the quantum covariance can be used to exclude classicality
and strong enough quantum covariances are also a proof of entanglement (see Eq. 19).
Moreover and if nothing else this second point of view has the advantage to bridge in a
clearer way the gap between quantum fluctuations and quantum correlations, comforting in
some sense the theory according to which the thermalization observed in our system may
be due, not simply to spin fluctuations neglected by the mean field treatment, but indeed
to the development of quantum correlations within this system.

It would be of great experimental interest to confront these ideas to actual experimentation by
monitoring and comparing the development of all these quantities (discord, spin quantum
covariances, and entanglement) in relation to the thermalization of our system and go
beyond theoretical speculations. This however cannot be done in our experiment because of
several technical and physical limitations which we now discuss.

Technical constraints and experimental route

Technical constraints and entanglement

The development of entanglement is generally tracked using entanglement witnesses. These
witnesses always involve the measurement of two non commuting observables. For spin
particles, these observables are often taken to be orthogonal components of the collective
spin. The class of entanglement witnesses that is adapted to our system requires that the
collective spin be squeezed (see Fig. 2), or put otherwise that the variance of one of the
spin components orthogonal to the collective spin be smaller than certain particular limits.
Witnesses based on spin squeezing are in general simpler for spin half systems as compared
to higher spin ensembles12. Moreover, recent numerical simulations13 [30] indicate that
the amount of squeezing generated in systems like ours might decrease as the number of
interacting spins grows, which, given typical experimental uncertainties, would make it hard
purporting to any clear cut spin squeezing based proof of entanglement build-up.

12It is of note in particular that squeezing is tantamount to entanglement in spin half systems, this is not
true for higher spins S > 1

2 for which, to put it shortly, only a certain minimal amount of squeezing is a proof
of entanglement [29]
13Focused on 1D systems
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Figure 2: Schematic representation of both coherent and spin squeezed states. Coherent states
[31] are states obtained after rotation of the |J ,−J〉z (|3,−3〉z) state, for many body samples such as
ours they correspond to states of uncorrelated spins prepared in a certain identical stretched state.
The initial state of the experiments reported on in this manuscript is such a state, it is obtained
using a π

2 Rabi pulse of the |3,−3〉z state. The spin vector of such a state can be seen as an isotropic
cone. When adequate correlations are established between the individual spins of the system, it is
possible to partly cancel out spin fluctuations in one direction at the expense of those enhanced in the
other direction. This is the basic idea of spin squeezing. [32]. The spin vector corresponding to these
states with reduced variance along a certain direction (θ+ π

2 in the case at hand) can be seen as an
anisotropic cone (if the state is still polarized, see [33] for a partial bestiary of spin squeezed states).
A squeezed state does not need to saturate the Heisenberg uncertainty principle, for a spin state to
be squeezed, it is only needed that the variance of the collective spin along at least one direction
orthogonal to the mean collective spin be smaller than the standard quantum limit, that is the
variance of the initial coherent spin state ∆2 Jz (In our case,

∣∣∣∣〈 J⃗
〉∣∣∣∣= 3N and ∆2 Jz = 3

2 N . Squeezing
generally requires nonlinear interactions [32]. Being quadratic, the Ising interaction between spins

(Si
z .S j

z) can lead to the squeezing of the collective spin state. This supposition was numerically
checked for small number (N=10) of spin 1 particles in a ring geometry [34].

In any cases these witnesses rely on the measurement of spin components lying in the plane
orthogonal to the collective spin average direction. However, such measurements were made
practically impossible - in our experiment - by the so called dephasing phenomenon as
shown in Fig. 4 and Fig. 3
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Figure 3: In a perfect world: the amplitude of the static quantization field is constant, in conse-
quence the Larmor frequency and frequency of the the RF field are time independent. This means
that in the frame rotating at ωRF , the spins’ rotation is halted: applying two consecutive π

2 pulses
is equivalent to the application of a single π pulse.

Figure 4: Mais dans la vie en vrai as put by Anne Sylvestre, the amplitude of the static field
changes through time, in consequence the spins do not remain still in the frame rotating at the RF
frequency. This uncontrolled rotation of the spins in between two consecutive Rabi pulses is what

we call dephasing.

Dephasing prevents us from ever measuring the transverse components of the collective
spin in a precise and reproducible manner. At most, one can measure a random component
Ŝφ = cos

(
φ

)
Ŝx + sin

(
φ

)
Ŝy of the spin, where φ, the dephasing angle, varies from shot to

shot, in accordance with the erratic fluctuations of the external magnetic field. Typically,
the dephasing is complete (i.e. the standard deviation of the dephasing angle ∆φ= 2π) in a
few (≈ 10) milliseconds. This means that the reproducible measurement of any transverse
component of the spin would require one quite exquisite regulation of the external mag-
netic field on the order of the Hz.
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Technical constraints and other quantum correlations

As explained above the quantumness of correlations can be measured in at least two ways.
The first one -quantum discord- involves quantities which are not suited to our experimental
platform (the density matrix of the system) or any generic experimental endeavors for that
matter, moreover the optimization processes that it requires cannot be realistically carried
out for systems comprised of thousands of particles.
Quantum covariance on the other hand is only defined for systems which have reached
thermal equilibrium, it is therefore not suited for tracking the growth of correlations as the
dipolar dynamics unfurl, moreover it would be challenging to measure quantum covariances
using our platform. One possible way of doing so, for perhaps spin 1 particles at most, is
the following [35]:
Consider first that the system reaches a state of thermal equilibrium14.
Consider the global spin populations operators Âm with m ∈ [| − S,S|]. To measure the
quantum part of these observables’ fluctuations we need to evaluate the susceptibilities (see
Eq. 15):

χm,m′ = ∂
〈

Âm
〉

∂λm′
(27)

which quantifies the change of Âm ’s expectation value when a perturbation of the form
−λm′ Âm′ is applied to the system.
Suppose that we can apply perturbations of the form −∑

m λm Âm =−µα∑
m mα Âm where α

=1 corresponds to the application of a magnetic field along the z axis (first order Zeeman
field), α= 2 corresponds to the application of a quadratic Zeeman field, α= 3 corresponds
to a third order Zeeman field and so on... Then we can measure the χmα susceptibilities

χ̃mα = ∂
〈

Âm
〉

∂µα
(28)

On the other hand, in the linear response regime we have〈
Âm

〉= 〈
Âm

〉
(0)+∑

m′
χm,m′λm′

= 〈
Âm

〉
(0)+∑

α
µα

[∑
m′
χm,m′m′α

] (29)

which implies that

χ̃mα =∑
m′
χmm′m′α

(30)

This equation can also be written

χ̃=χM (31)

Where

14This notion being, to me, a bit unclear as far as our experiment’s system is concerned : it is not obvious
that our system can ever be fully described by a thermal density matrix -even at long times when the systems
reaches a steady state. This thermal description may make more sense for individual parts of the system
which are expected to assume a thermal like behavior induced by entanglement
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� M = Mm′α = m′α is a matrix with dimensions 2S + 1×d where d is the number of
generated Zeeman fields of order α (see below).

� χ is the matrix whose elements are given by the χm,m′ susceptibilities

� χ̃ is the matrix whose elements are given by the χ̃m,α susceptibilities

Inverting this relation shows that precise measurements of the χ̃mα susceptibilities can allow
us to find the χm,m′ population susceptibilities

χ= χ̃M−1 (32)

Such an experiment is impossible for high spin particles, indeed accessing the full χ matrix
requires the ability to generate and control Zeeman filed up to order 2S+115... Note however
that while we cannot in general, for higher spin particles, isolate every susceptibility χm,m′

we can (through Eq. 29) get to linear combinations of these susceptibilities and therefore
to the quantum variance and covariance of some linear combinations of the populations
granted the system has reached thermal equilibrium.

Experimental route

Given the technical and physical particulars that we have discussed above our team has
decided to focus on the growth, not of entanglement which is technically out of reach, nor
quantum correlations which are unadapted to our experimental set-up, but simply on the
development of spin correlations in general (see Fig. 5) in their relationship to thermaliza-
tion. Investigating the growth of these correlations while retaining the many specificities
(high number of atoms, and impossibility of local measurements) of our system has required
the development of new experimental methods.

Figure 5: Correlations of varying strengths can emerge in any given system. The image above de-
picts the hierarchy between different types of correlations: a system exhibiting quantum correlations
is correlated, for it to be entangled it must be quantum correlated (not a classical quantum state),
and finally if it is to escape the grasp of local hidden variable theories [36], it must be entangled.
Note that non local states can in turn be further categorized into EPR or Bell like states. In the

chromium experiment we focus on global spin correlations (green).

15Put otherwise: a big enough perturbation variety should be applied to derive all of the individual
susceptibilities
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In this manuscript of mine I will discuss two of these methods, the first one is based on the
measurement of the total magnetization fluctuations Chap. 3, while the second relies on
the sample’s bipartition Chap. 4.
The principle subtending both these methods being the same: to infer the system’s atomic
correlation properties from readily accessible global observable statistics.

Dissertation organization

In the first chapter of this manuscript we present the building blocks of the experiments
that were carried out in the course of my PhD. The main experimental set up is presented
and the condensation process is briefly described. The basic working principles of lattice
physics as well as the actual geometry of the experiment’s optical lattices are subsequently
depicted, we focus in particular on the 1064 nm laser system which I have built. We then
report on the triggering of the quench dynamics using resonant RF pulses. Finally, we lay
out the principles of the two imaging systems used to collect experimental data, with a
certain emphasis on the fluorescence one which I have also built.

The second chapter is quite technical. It focuses on data treatment: the observables with
which we were concerned in the course of this PhD (expectation values, variances and co-
variances of spin populations) are sensitive to the many physical phenomena intervening
either in the initialization, interaction or measurement stages of the experiment. These
physical phenomena which are of inherently stochastic nature are such that these vari-
ous statistical moments are not directly accessible. Careful consideration of these noises’
chronological hierarchy will let us extract the relevant correlation properties from our data.

In chapter three, we present the first experiment which we have carried out in the course
of this PhD. In this experiment, we monitor the quench dynamics of N ∼ 10000 chromium
atom pinned to an anisotropic 3D lattice. We focus on the time evolution of the statistical
moments of the spin populations which we link to various global correlators gauging the
development of correlations in our system. We show that spin correlations indeed grow in
our system as it thermalizes.

The fourth and last chapter is dedicated to the experimental realization of a new kind of
bipartite measurement. We show that this type of measurement reveals correlations that
are inaccessible to the type of measurements performed in chapter three and give an ex-
perimental proof of the development of these so called bipartite correlations in our system
as it thermalizes.

The first appendix focuses on the architecture of the 851-425 nm laser chain I have built
during my PhD. The 425 nm laser is used for cooling and imaging purposes. The second
one deals with the alignment of the bichromatic lattice. The third addendum reports
on data treatment through the partial covariance technique. Finally, in the fourth and
last appendix, I present the exact numerical simulation of the dissipative dynamics of a
rectangular plaquette containing 8 singlons and 4 doublons.
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1 The experiment

The intense atom glows. A moment, then is quenched in a most cold repose
– Percy Bysshe Shelley (Adonais)

In this first chapter, we briefly depict the steps leading to the production of the chromium
Bose-Einstein condensate (BEC), in doing so we will be presenting the experimental set-up,
focusing on the upgrades I have contributed. We will then describe other building blocks of
the experiments, in particular, optical lattices, their basic working principles and geometries.
A short section is then dedicated to the use of radio frequency fields in the triggering of the
spin dynamics. Finally, we report on the imaging procedures used in the experiment. More
detailed accounts of some aspects of the experimental setup can be found in [37, 38, 39, 40]

1.1 Bose-Einstein condensation

In this section we describe the main steps and apparatus used in the production of the
chromium BEC.

Figure 1.1: Schematic representation of the experimental set up. The H1, H2, V532 are the
beams which together form the main optical lattice of the experiment. This basic architecture
can be supplemented with an additional 1D lattice using the 1064 nm beam. The end result is a

bichromatic lattice which allows for bipartite measurements, see Chap 4.

Cold atoms experiments require ultra-high vacuum conditions. These conditions are met in
our set-up using three different pumps. The primary pump (backing pressure of 30 mBar)
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sets the stage for the turbo-molecular1 one which governs the pressure within the oven2.
The pressure within the oven enclosure varies between 2.10−10 mBar and 10−9 mBar depend-
ing on the oven’s temperature. As for the ionic pump 3, it is dedicated to the experimental
cell volume whose pressure is as low as 7.10−11 mBar, this pressure is of great importance as
it dictates the collisional rate of the chromium atoms with the molecules of the background
gas and ultimately the condensate’s lifetime (12 s).
The effusive atomic beam that reaches this cell is generated by heating a 20 g, 99.7% pure
chromium bar4 up to 1400◦C . This temperature speaks of the compromise made between
the lifetime of the chromium source and the need for an atomic influx strong enough to
reach the quantum degeneracy regime [40].
The transverse cooling set-up greatly improves this influx by narrowing the transverse ve-
locity distributions of the beam which in turn increases the number of atoms interacting
with the Zeeman slower - factor 5 at least on the number of atoms captured by the magneto
optical trap (MOT). The transverse cooling beams are σ+ polarized and are red-detuned
(by approximately Γ, see Fig. 1.2) with respect to the

∣∣7S3,mS = 3
〉→ ∣∣7P4,mS = 4

〉
cycling

transition. This detuning is controlled (independent of other beams at 425 nm) by two
pairs of quantization coils set in the Helmholtz configuration. These pairs of coils are set
respectively along the V and Q directions, see Fig. 1.1.
The Zeeman slower (ZS) is a critical component of the experiment as it allows for a most
effective deceleration of the atoms emitted by the oven: the maximum capture velocity
of the ZS is 550 m.s−1, the final velocity of the atoms is 40 m.s−1 [40]. This is achieved
by immersing said atoms in a carefully engineered magnetic field, which, by inducing an
inhomogeneous Zeeman effect along the traveling direction effectively compensates for the
frequency detuning that is captured by the Doppler effect. The atoms are then readily
caught in the magneto-optical trap (MOT) laid in the experimental chamber. In this kind
of trap, spatially varying Zeeman shifts induced by magnetic gradients make for position de-
pendent resonance conditions and ultimately for position dependent radiative forces which
constantly push the atoms back to the center of the trap. These radiative forces are gen-
erated by 3 pairs of counter-propagating σ polarized 425 nm beams whose carefully chosen
(red-)detuning also ensures additional cooling effects (T ≃ 100±20 µK ). The gradients on
the other hand are those of a quadrupolar magnetic field which, in practice, is created by
a pair of coils set in a anti-Helmholtz configuration.
The chromium MOT (N = 5× 106 [37]) does not contain as many atoms as alkali MOTs
(N ≃ 109), this is mainly due to light assisted collisions whose rate is two to three orders
of magnitude bigger for chromium than most alkali atoms [37]. It is of note however that
chromium MOTs are also smaller which ensures high enough initial spatial densities for the
atoms’ successful Bose condensation.

1Spiral model SH-100, Varian. pumping capacity 110L.s−1[39]
2HT12 model, ADDON company [39]
3VacIon Plus 75, Varian, pumping capacity 75 L.s1 [39]
4Product of the GoodFellow Company[39]
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Figure 1.2: Transitions of interest for the Bose-Einstein condensation of Chromium. Γ is the decay
rate from excited states to lower states relevant to the transition that is considered. The transition
rates we show were taken from the NIST database except for the 127 and 42 Hz transition rates

which were found in [41]

As mentioned in this manuscript’s introduction, BECs are characterized by high phase
space densities. Such densities are generally achieved through forced evaporation tech-
niques which entail drastic atomic losses. For some atoms such as sodium and rubidium, it
is possible to perform said evaporation directly in a magnetic trap, in the case of chromium
however, dipolar relaxation rates prevent such simple approaches, indeed not only do these
collisions heat up the atomic gas by converting magnetic energy into kinetic energy, they
also induce a certain degree of spin depolarization. In particular atoms which end up with
negative total spin projections m j ≤ 0 can escape the trap5. Alternatively, the evaporation
can be carried out in an optical dipolar trap6 (DT) which, being far detuned with respect
to the trapping transition, is mostly insensitive to the atoms’ spin degrees of freedom.
Loading this trap is a crucial step in the Bose-Einstein condensation process of chromium,
it is however difficult to directly load atoms into such optical traps because of their relative
shallowness (Trapping depth≤1 mK). In fact, it cannot be done by superimposing MOT
and DT either, as is customary [42]. That is because, as mentioned before, light-assisted
inelastic collisions constitute a great limitation to the number of atoms in the MOT, more so
in the dipole trap wherein the atomic density is higher. Therefore even if MOT to DT atom
transfer rates were excellent, it would still be insufficient to reach the quantum degeneracy
regime [37]. Getting rid of light assisted collisions requires transferring atoms to internal
states insensitive to the MOT beams. As it turns out both excited states

∣∣7P4
〉
and

∣∣7P3
〉

5The magnetic potential energy can be written Ep,mag ≃ gµB m j B , atoms with negative spin quantum
number are driven away from the center of the quadrupolar trap where the magnetic field is at its lowest.
They are called high field seekers.

61075 nm large band laser, waist at 40 µm, Rayleigh Length 4.7 mm, 100 W Ytterbium doped fiber laser,
model: YLR-100-LP-AC
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can decay towards such states, they are the
∣∣5D4

〉
,
∣∣5D3

〉
and

∣∣5D4
〉
,
∣∣5D3

〉
,
∣∣5D2

〉
,
∣∣5S2

〉
levels

respectively, see Fig. 1.2. These are metastable states, their lifetimes, only considering ra-
diative decay processes, reaching values greater than 50s [43]. The transition of the atoms
to the

∣∣7P4
〉
level is ensured by the MOT lasers (at 425.553 nm), whereas the transition to

the
∣∣7P3

〉
level is brought about by an additional low power depumping laser at 427 nm.

Decays from the
∣∣7P3

〉
level towards the metastable states occur at higher rates than those

starting out from the
∣∣7P4

〉
state, moreover the favorable

∣∣5S2
〉
state which is specifically

populated by this decay path has better collisional properties than the 5D states [44].
All in all, these states accumulate within the magnetic trap without suffering from light
assisted collisions, and are therefore efficiently transferred to the dipolar one, unless, as
mentioned before, these atoms end up with negative total spin projections along the quan-
tization axis. Tackling this particular issue, the atoms are subjected radio frequency (RF)
ramps centered around the Larmor frequency. These rapid adiabatic passages (see 1.2.6),
when executed at high enough frequency ”cancel” [45] the effect of the magnetic forces. In
particular negative ms states are no longer ejected by the magnetic trap, their trajectories
having been reduced to small oscillations around the center of the trap which greatly im-
proves (60% typically) the number of atoms loaded in the horizontal dipolar trap (HDT).
Once the atoms have been loaded into the HDT, the magneto optical trap is switched off, and
the atoms are repumped into the ground state using duly named repumping lasers (633.184
nm, 653.973 nm, 663.183 nm), whereupon atoms are polarized into the

∣∣7S3,ms =−3
〉
state

using a 15 µs σ− polarized 427 nm pulse, hence avoiding detrimental dipolar collisions
whose rate would grow as the evaporation proceeds and the atomic density increases. More
specifically, atoms in this fully stretched state can only incur spin changing dipolar col-
lisions if their kinetic energy is close to the Zeeman induced energy difference between
two consecutive substates i.e. Ec = (2×)gµB B : for strong enough magnetic fields, and low
enough temperatures, this condition is rarely fulfilled for atoms in the

∣∣7S3,ms =−3
〉
state,

and when it is, the collision only contributes to the increase of cloud’s phase space density
(after repumping) [46].
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Figure 1.3: The repumping lasers take two distinct paths, the second of which we call dark spot,
see Fig. 1.1. This path is active during the accumulation step. A metallic wire is used to obstruct
the center part of the beams, in doing so the repumping lasers interact only with metastable atoms
that are outside the reach of the horizontal dipolar laser but which are still magnetically trapped.
By transferring them back to ground state, they once again interact with the MOT light, and have

therefore a new chance of accumulating into the dipolar trap.

At this stage, there are about
[
5×105 −3×106

]
atoms in the HDT, their temperature is

more or less one third (T ≃ 90µK) that corresponding to the trap’s depth 7 and the evap-
oration process can finally begin. In practice, it starts by diverting part of the horizontal
beam’s power to an alternative route, that is the vertical dipolar beam, all the while de-
creasing the laser’s overall power. Horizontal and vertical beams form into a cross shaped
pattern, the point of intersection effectively corresponds to a dimple of potential in which
atoms accumulate.
At this point, the depth of the dipolar trap is further decreased, by lowering the overall
laser’s power, this process takes approximately 15 s, the phase space density increases grad-
ually until eventually leading to the formation of condensates with a number of atom N
ranging from 10000 to 20000 with temperatures as low as 50 nK, Thomas-Fermi radii of 5
µm, and spatial density of approximately 2×1014 cm−3. The optical trap’s frequencies are
approximately (2π× (245,298,210) Hz ± 10%)[12].

Final notes:

� Additional coils surround the experimental cell and compensate undesired magnetic
gradients, such as the residual field of the ZS, that of the ionic pump and the earth’s.

� All of the beams at 425 nm (the Zeeman slower beam, the transverse cooling beams,
the imaging beams, the MOT beams) share a common origin: a Master Diode-Tapered
Amplifier system which was set up at the very beginning of this doctoral work. This
system, as well as other diodes and relevant frequency locks, are described in greater
detail in App. A.

7To maximize the overlap between the HDT and the MOT, the HDT’s transverse mode is adapted through
the modulation of the RF frequency fed to the AOM controlling it, the reported temperature largely depends
on the particulars of this frequency modulation
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Once the chromium atoms have been condensed, they can be efficiently8 loaded into optical
lattices, at which stage, they settle in the so-called Mott insulating phase, hence named
because of the strong suppression of transport phenomena it displays. Dipolar dynamics can
at last be triggered using strong resonant radio frequency (RF) pulses. These aspects
are described in the following section.

1.2 Optical lattices and triggering of spin dynamics

In this section we outline the basic working principles of optical lattices, we then describe the
geometry of the actual experiment’s lattices and the associated loading routines. We finally
present the interaction of spin particles with radio frequency magnetic fields and explain
how this interaction can be used to trigger spin dynamics

1.2.1 Basic principles

Placing a neutral two-level atom in a monochromatic electric field E oscillating at frequency
ωL will induce an electric dipole D whose interaction with said electric field can be written
[47]

Vdi p ∝−D.E ∝α(ωL)I (1.1)

Equation 1.1: Interaction potential between a neutral atom and an oscillating electric field of inten-
sity I . Vectorial and tensorial components of the atomic polarisability α offer subtle experimental
knobs that can be used for spin preparation, as was done by our team to initialize atoms in the

ms =−2 state [48]

For far detuned light, this dipole potential energy takes the following form

Vdi p = ħΩ2

4δ
(1.2)

Where

� Ω= d |E |
ħ is the Rabi frequency, it depends on both the amplitude of the electric field |E |

and the strength of the transition under consideration. This strength is characterized
by the dipole matrix element d

� δ=ωL−ω0 is the detuning, that is the difference between the electric field’s frequency
of oscillation and the frequency of the transition under consideration

Far-off resonance light can therefore be used to trap atoms, in particular depending on the
detuning’s sign, atoms will either be attracted or repelled from intensity maxima. While
chromium is in no way a two-level atom, the basic principles enclosed within Eq.1.2 still
hold true, and chromium can indeed be trapped using far detuned light. This effect comes
into play in the optical trapping (DT) of atoms described in the previous section.
The particularity of optical lattices however lies in their periodic structure, that is in the
alternation between lows and highs of light intensity. Depending on the light’s detun-
ing, atoms can be loaded into either of these peaks and valleys, forming into more or less
crystalline arrangements. Generally speaking such periodic light structures arise from the

8Optical lattices were experimentally available way before 1995, the advent of Bose Einstein condensation
has nonetheless allowed for better loading of these lattices: momentum-wise, only low lying lattice bands
are populated, 65 spatially, unit filling is more easily achieved
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interference of two or more coherent beams.

Figure 1.4: A 1D optical lattice is the result of interferences between two coherent beams, the
spatial period i of this lattice depends on the angle θ between both beams: i = λ

2sin(θ/2) . For

counterpropagating beams i = λ
2

All of the experiments that are to be presented in this manuscript were conducted in
a 3D anisotropic 532 nm lattice. An additional 1D 1064 nm lattice was set up during
my doctorate, and was used to carry out bipartite measurements, the details of these
measurements will be discussed in Chap. 4. Let us for now review the experimental set-up
specific to this newly added laser.

1.2.2 The 1064 nm laser’s set-up

The 1064 nm laser9 setup is presented in Fig. 1.5. It is of note that the 1064 and 532 nm
beams are generated by two distinct apparatus, there is therefore no phase or frequency
relationship between these beams.
In order to form a bichromatic lattice along the a1 direction, these beams are mixed to-
gether using a dichröıc mirror. After they have passed the atoms, the lasers are split apart
using a second dichröıc mirror and reflected back using dedicated mirrors. Decoupling the
reflected beams allows for simpler alignment procedures, this however increases the beams’
optical paths’ differential fluctuations, which ultimately modifies the intensity pattern at
the vicinity of the the atomic cloud. The control and stability of this pattern will be dis-
cussed in Chap. 4

1.2.3 Lattices’ geometry

The 532 nm lattice intensity is given by

Idi p,532(r) =
〈∣∣∣Ea1 (r)

(
e i(k532,Ha1.r+ω532,H t+φ1) + c.c

)
eV +E ′

a1
(r)

(
e i(k532,Ha1.r−ω532,H t+φ′

1) + c.c
)
eV︸ ︷︷ ︸

H1

+Ea2 (r)
(
e i(k532,Ha2.r+ω532,H t+φ2) + c.c

)
eV︸ ︷︷ ︸

H2

+Ea3 (r)
(
e i(k532,V a3.r+ω532,V t+φ3) + c.c

)
a⊥

3 +E ′
a3

(r)
(
e i(k532,V a3.r−ω532,V t+φ′

3) + c.c
)

a⊥
3︸ ︷︷ ︸

V 532

∣∣∣2〉
(1.3)

9High Power Fiber Laser ALS-IR-1064-10-E-CC-SF provided by AZURLIGHT SYSTEMS
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While the 1064 nm lattice intensity is given by

Idi p,1064(r) =
〈∣∣∣Ea1,i (r)

(
e i k1064a1.r+ω1064t+φi + c.c

)
eV +E ′

a1,i (r)
(
e i k1064a1.r−ω1064t+φ′

i + c.c
)
eV

∣∣∣2〉
(1.4)

Where

� The time average is taken over rapidly oscillating terms

� The ωxxxx are the frequencies of the various beams, ω532,H and ω532,V are slightly
different so that the vertical and horizontal beams may not create any relevant inter-
ference pattern

� The kxxxx are the norms of the wavevectors of the various beams

� a1, a2, a3 are unit vectors corresponding to the travel direction of each of the H1(1064),
H2 and 532V beams (see Fig. 1.6a, 1.6b). eV and a⊥

3 are also shown in this figure.

Taking into account the fact that the lattice beams’ detuning is much bigger than the
fine structure’s transitions’ frequencies, the dipolar potential is still given by Eq.1.1, with
α1064 ≃ 0.54α532

(a) View of the lattices’ beams’ arrangement in the
horizontal plane i.e. parallel to the ground

(b) View of the lattices’ beams’ arrangement in the
vertical plane

This expression can be further simplified by noticing that the condensate (5 µm) is small
in comparison to the Rayleigh lengths (∼ cm) and the waists of the various beams (∼
50 µm), so that we may neglect the variation of the electric fields amplitudes across the
region of interest10: E(r) → E , on the other hand the time averaging lets us omit all time
dependent terms, which oscillate with characteristic frequencies much bigger than those
that characterize the atom’s center of mass’ motion. The resulting potential landscape is
depicted in Fig. 1.7b, 1.7a.

10We have experimentally observed the limitations of this approximation investigating tunnel effects in
our system.
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(a) Horizontal lattice potential landscape when the
infrared laser is switched off. The vertical lattice’s

(along ez) period is 268 nm.

(b) Horizontal lattice potential landscape when the
infrared laser is switched on (φi = 0). There are now
two distinct well families indexed by the A and B
letters. The potential wells are anisotropic, more-
over none of their main axes are aligned with the
bipartition axis. This does not impair the biparti-
tion process which still isolates atoms from the two

well families shown above (A and B)

Figure 1.7: Bichromatic and monochromatic lattices’ horizontal potential landscapes. The biparti-
tion axis is given by the direction of propagation of the H1 and 1064 beams, it indicates the direction
along which the atoms are separated when bipartite measurements are performed (see Chap.4).

1.2.4 Loading routine

In order to load the BEC in the lattices, the lattice’s lasers’ powers is gradually ramped
up, they are controlled by 3 sets of independent acousto-optic modulators (AOMs), with
respective frequencies of 80, 80 and 110 MHz. The loading sequence of the condensate is
depicted in Fig. 1.8. The release sequences are various and depend on the experiment that
is carried out. Release sequences are detailed in each of Chap.3 and Chap.4.
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Figure 1.8: Loading sequence of the BEC. The power of the lasers is gradually increased11, and we
reach typical lattice depths of 22 ∼ 28Er

12. The duration of the spin dynamics in the lattice is fixed
by the length of the power plateau ∆t . The 30 ms (∆ti nc) duration over which the lasers’ power
is slowly increased is set by several constraints, one of which is the adiabaticity condition which
must be fulfilled in order to fill low lying energy bands preferentially, according to this condition the
increase rate of the lattice depth should be smaller than frequencies related to typical energy gaps
(∆E) between the ground motional states of the atoms in the lattice (first band) and the first excited

states (second band) dV
d t << ∆E 2

ħ ≃ 340×103Er .s−1 [12]. Other conditions state that the ramp should
let atoms fully explore the lattice potential to adequately rearrange themselves and homogeneously

and regularly fill the lattice (∆ti nc > 1
fDipolarTrap

≃ 5 ms).

1.2.5 Atomic density pattern

The competition between various energy scales (atomic interactions and potential energy
as dictated by the radial intensity patterns of the laser beams) is such that atoms end
up in the well known wedding cake conformation: lattice sites in the inner core generally
contain pairs of particles also called doublons, whereas lattice sites in the external shell are
populated by single particles for the most part. This arrangement is specific to the Mott
state and stems from the fact that number fluctuations are energetically unfavorable when
the tunneling energy scales are smaller than the interatomic repulsions.

12What we show here are the typical voltage ramps programmed into the waveform generators controlling
the lasers’ intensities. While the derivatives of the wave forms shown here are discontinuous, the actual
lasers’ intensities evolve rather smoothly.
12The Mott transition happens at 8 Er [49]
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Figure 1.9: When the condensate is slowly loaded in the optical lattice, the competition between
dipolar potential energy and interaction energy dictates the number of atoms in each lattice site.
In the inner parts of the lattice, the dipole potential energy (≡ depth of the lattice) is such that
doublons are energetically favoured: despite the adverse contribution of atom atom interactions, it
is less costly energetically for atoms to form into particle pairs than to populate external wells which

are more shallow

1.2.6 Triggering the dynamics : A spin’s interaction with a magnetic field

After the condensate has been loaded in the lattice, all atoms are in the
(∣∣7P3,ms =−3

〉)
spin

state which, as an eigenstate of the interaction Hamiltonian Ĥsec = 1
2

∑
i , j Vi j

[
Ŝz

i Ŝz
j − 1

4

(
Ŝ+

i .Ŝ−
j + Ŝ−

i Ŝ+
j

)]
),

remains unchanged up to a global phase coefficient.
In order to trigger the dynamics, we rely on radio frequency fields effect on the spins to
quench their internal degrees of freedom. In the following, we briefly review the spins in-
teractions with radio frequency fields and the two techniques which we use to manipulate
these atoms’ internal states. A more detailed account of these aspects can be found in [50].

The interaction Hamiltonian between a spin Ŝ and a static field B0
13 along ez is written:

Ĥ =−γŜ.B0 (1.5)

where:

� γ=− gSµB

ħ is the gyromagnetic ratio.

The eigenstates of Ĥ are denoted |m〉z, corresponding eigenvalues are Em = mgSµB B0.
This expression remains the same when we consider an additional magnetic field oscillating
at frequency ω comparable to ω0 in a direction orthogonal to ez : B1 = B1 cos(ωt )ux . In
this case however, Ĥ can be rewritten

Ĥ = ϵω0Ŝz +2ϵΩcos(ωt )Ŝx (1.6)

where:

� Ω= |gS |µB B1

2ħ is the Rabi frequency

13Note that B0 is space independent. In the case of space dependent magnetic fields, the external degrees
of freedom of the atoms must be taken into account, the fact that r̂ and p̂ do not commute can for example
lead to so-called Majorana losses [50]. In our case, for an individual atom space dependence can be neglected
as it is pinned to the 3D lattice
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� ω0 =
∣∣γ∣∣B0 is the Larmor frequency

� ϵ=±1 is the sign of the Landé factor

Using the usual scaling operator Ŝ±, we get :

Ĥ = ϵω0Ŝz
Spin precession around z

+ϵΩ
2

[
e−iωt Ŝ++e iωt Ŝ−+e−iωt Ŝ−+e iωt Ŝ+

]
promotion terms

(1.7)

In the frame rotating at frequency ϵω, the interaction Hamiltonian takes the following
effective form:

Ĥ −→ Ĥeff =−ϵδŜz +ϵΩ
2

[
e i (ϵ−1)ωt Ŝ++e−i (ϵ−1)ωt Ŝ−+e−i (ϵ+1)ωt Ŝ−+e i (ϵ+1)ωt Ŝ+

]
(1.8)

Where δ=ω−ω0. Depending on the sign of ϵ, promotion terms in the equation 1.8 will be
static or oscillate at frequency 2ω. Performing the so called rotating wave approximation14,
we drop these fast oscillating terms so that:

Ĥeff =−ϵδŜz +ϵΩ
2

[
Ŝ++ Ŝ−

]=−ϵδŜz +ϵΩŜx =
√
δ2 +Ω2Ŝ.u=ΩG Ŝ.u (1.9)

Where

� ΩG =
p
δ2 +Ω2 is the generalized Rabi frequency

In the rotating frame, the interaction between a spin and an oscillating magnetic field in the
presence of a strong external static field reduces to its interaction with an effective static
field Beff given by.

Beff = ħ
p
δ2 +Ω2

gSµB
u (1.10)

u= cos(θ)ez + sin(θ)ex cos(θ) = −ϵδp
δ2 +Ω2

sin(θ) = ϵΩp
δ2 +Ω2

(1.11)

The spin flipping techniques used in the experiment are based on equation 1.9, these tech-
niques are rapid adiabatic passages (RAP) and Rabi pulses.
In rapid adiabatic passages, an atom which we will assume, without loss of generality, has
been prepared in the |m〉z state is placed in a radio frequency field whose Rabi frequency is
slowly increased from 0 to Ω1. In doing so, the atomic state seamlessly transforms into |m〉u
such that u.z= cos(θ) with cos(θ) ≃ 1. Sweeping ω through the resonance from δ< 0, |δ|≫Ω1

to δ > 0, |δ| ≫ Ω1 increases θ from 0 to ∼ π, switching off the RF field (slowly yet again)
leaves the atom in the |−m〉z state, effectively flipping it.

14This approximation is valid if the generalized Rabi frequency is negligible in comparison to the Larmor

frequency ΩG =
√
δ2 +Ω2 ≃ 50−100kH z ≪ omeg a0 = 2π2.2M H z
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Figure 1.10: RAPs’ power and detuning ramps. For the RAP procedure to be efficient, the spin
must adiabatically follow the eigenstates of effective Hamiltonian. The adiabaticity condition writes∣∣θ̇∣∣≪p

Ω2 +δ2 ≡ ∣∣δ̇Ω+δΩ̇∣∣≪ (
Ω2 +δ2

)3/2
[50].

Rabi pulses, on the other hand, involve resonant RF pulses i.e. δ= 0.
Consider, for the sake of simplicity, a spin 1

2 particle prepared in the |+〉z state, since δ= 0,
u = ex and the evolution of the spin under the influence of the RF field is given by the
evolution operator U = e−i Ĥ t/ħ where

Ĥ ≡ ħ
2

(
0 Ω

Ω 0

)
(1.12)

Which leads to

Ψ(t ) = e−i Ĥ t/ħ |+〉z =
1

2

[
e−iΩt/2 |+〉z +e+iΩt/2 |−〉z

]
(1.13)

For an interaction time ∆t = π
Ω (π pulse), we get Ψ( πΩ ) ∝ |−〉z, we have flipped the spin

population.

For ∆t = π
2Ω

(
π
2 pulse

)
, we get an equal superposition of both |+〉z and |−〉z states.

For a spin 3 particle, the normalized populations’ distribution as a function of the RF pulse
angle read

Nms (0)/N =
(

6

ms +3

)
sin

[
θ

2

]6+2ms

cos

[
θ

2

]6−2ms

(1.14)

Where
(n

k

)= n!
k!(n−k)!
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Figure 1.11: Blue trajectory: The spin vector trajectory in the laboratory frame during a π
2 pulse

for a spin initially along z. Green trajectory: Its trajectory in the rotating frame. In practice,
the quantization magnetic field’s amplitude is about 0.79 Gauss which corresponds to a ∼ 2.2 MHz
Larmor frequency. Typical RF frequency detunings are on the order of the kHz which remains
small compared to typical Rabi frequencies. In general, the Rabi frequency is finely adjusted so that
RF pulses durations may always be an integer number N of Larmor periods. For a π

2 pulse N = 5,

in which case ΩR = 2π
5

f0
4 = 2π×105 kHz. These high amplitudes are reached using a 30 watt RF

amplifier.

Figure 1.12: Architecture of the RF chain. The electronic switches allow for fast (≈ 5-15 ns)
switch on and off of the signals generated by the waveform generators (WFG). These signals can
be amplified by two distinct amplifiers both of which are connected to the same mechanical switch.
Only one of these inputs (the 75 W amplifier’s output or the 30 W amplifier’s output) is sent to the

RF coil that generates the RF field. The other input is connected to a 50 Ω termination.
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1.3 Imaging techniques

After triggering the dynamics, the atoms’ internal state evolve under the influence of dipole
dipole interactions. This evolution can be monitored through the measurement of the seven
Zeeman populations of chromium. Several techniques are employed to do just that: first,
the seven states are separated using the century old Stern & Gerlach technique, then, the
atomic clouds thus obtained are imaged using either absorption or fluorescence imaging.
These procedures are detailed in the following section.

1.3.1 The Stern & Gerlach technique

The seven spin states of the chromium atoms are separated using a ≃ 9 G.cm−1 magnetic
gradient generated by the MOT coils. The force thus felt by each spin state is proportional
to their spin quantum number ms . The separation of these spin states allows us to unravel
the dynamics of the populations and to monitor the growth of correlations through time.

1.3.2 Absorption imaging

The so called absorption imaging technique focuses on the modification of the imaging
beam’s characteristics as it propagates through the atomic cloud to be observed.

Figure 1.13: The absorption imaging setup is composed of two achromatic lenses and a tele-
scope which allow for a global magnification factor of 3. The CCD camera used (the PixelFly)
sports a 51% quantum efficiency @425 nm. The physical size of the pixels is 6.15 µm according
to the manufacturer. The imaging beam is σ− polarized, it is non saturating and tuned to the∣∣7S3,ms =−3

〉→ ∣∣7P4,ms =−4
〉
transition. Imaging pulses’ durations do not exceed ≈ 50 µs.
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This technique builds upon the Beer-Lambert’s law, which, when valid, predicts the expo-
nential decrease of the laser’s intensity as it goes through the atomic cloud. More specifically,
we have [12]

N =− 1

σ0

Ï
∆x∆y

ln

(
It

Ii

)
d yd x (1.15)

Where

� N is the number of atoms in a given cloud

� ∆x , ∆y are integration lengths spanning the atomic cloud’s transverse area

� σ0 = 3λ2

2π is the absorption cross section

� Ii is the incident intensity. Ii ∼ 0.1Isat where Isat = πhcΓ
3λ3 = 8.503 mW.cm−2 is the

saturation intensity of the imaging transition

� It is the transmitted intensity

Strictly speaking, this equation only allows us to recover the number of constituents in the
stretched state

∣∣7S3,ms =−3
〉
. To recover the number of constituents of clouds corresponding

to other spin momenta numbers, we use multiplicative factors, called detectivity factors
accounting for the laser’s detuning and the modification of the atoms’ absorption cross
section as they are optically pumped towards the ms = −3 substate during the imaging
process. Detectivity factors can be deduced by comparing the experimental populations
found through Eq. 1.15 at time tdyn = 0 ms to those given by Eq. 1.14.
As 52 chromium does not have any hyperfine structure and because the experimental clouds
are in general not very dense, this imaging technique proved ideal for absolute atom number
determination. Number uncertainties are estimated to about 10%.

1.3.3 Fluorescence imaging

Atomic clouds can also be characterized using the so-called fluorescence imaging technique.
This technique focuses not on the characteristics of the transmitted imaging beam, but
instead, on those photons spontaneously emitted by the atoms upon interaction with this
beam.
By collecting and counting these photons one can recover some of the clouds’ characteristics.
More specifically, while it is hard, for example, to get quantitative estimates of N using
fluorescence imaging, it is in theory possible to measure the ratios between the number of
constituents in two distinct clouds with greater precision as this technique is less sensitive
to the Zeeman structure of the imaging transition. This relative insensitivity stems from
the conjunction of various factors:

1. In theory15, the external magnetic field should be close to 0 during the imaging
phase, so that the Zeeman induced frequency shifts remain small in comparison to
the detuning between the imaging laser and the atomic transition.

2. The (red-)detuning of the imaging laser’s frequency which makes it less sensitive to
the details of the Zeeman structure. This detuning was experimentally optimized for
each kind of experiment we carried. This optimization aimed at balancing the various
clouds signals as well as their shapes and distances of separation. The red detuning
coupled to the fact that we use the MOT’s horizontal counterpropagating beams for

15In practice, the magnetic field parameters are adjusted so that the imaging of the clouds is as balanced
as possible at td yn = 0 ms
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imaging also entails a cooling effect similar to those at play in optical molasses and
limits the expansion of the atomic clouds in the horizontal plane during the imaging
phase16.

3. The long time duration of the imaging pulses (750 µs -1.3 ms depending on the
experiment at hand) which leads to complete spin scrambling within each individual
cloud. This effect is supplemented by the fact that the imaging beams come from 4
different directions which makes for random polarizations and ultimately for smaller
sensitivity to the spin degree of freedom and negligible transient imaging regimes
which is in clear contrast with the absorption scheme wherein the various spin states
are slowly pumped towards the resonant state

∣∣7S3,ms =−3
〉
.

All in all, the imaging of the various spin states is more homogeneous as is evidenced by the
measured fluorescence detectivity factors fm whose dispersion around their mean value fm

is
max( fm )−min( fm )

fm
≈ 0.25 whereas it could reach values as high as 2.07 for absorption imaging

[15].

The remaining inhomogneities can be linked to several limitations:

1. It is hard, if not impossible, using the current experimental set-up, the Stern &
Gerlach characteristics, and the imaging time constraints, to enforce a zero magnetic
field throughout the area over which the various atomic clouds spread (≃ 5×3 mm).
This is mainly due to eddy currents which subside in times comparable to the time
of flight (15 ms).

2. The complex intensity landscape of the MOT’s horizontal beams which are used for
fluorescence imaging. This landscape can be seen below, it is inhomogeneous by
nature.

Figure 1.14: The waists of the horizontal MOT beams were evaluated to 1830 and 2160 µm. The
limited size of these beams is such that all clouds cannot be illuminated uniformly after the S&G

separation. This also limits TOF durations which can be used.

3. Photon collection efficiency is asymmetric, all else being equal, some clouds are better
imaged than others. This defect is inherent to the imaging system and the many

16Using the MOT beams for imaging induces however undesirable couplings between the delicate MOT
adjustments and the imaging process.
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geometrical constraints we faced building it, as shown in the figure below it is due to
limited numerical aperture of the imaging system we use.

Figure 1.15: Because of the Stern & Gerlach technique used to separate the different clouds, the
various emission cones intercepted by the first mirror of the imaging path and subsequent optical

elements are different. Estimated atomic proportions are spoiled by this asymmetry.

4. The quality of the fits which are ultimately used to find out the atom numbers in
each cloud depend on the shapes of these clouds, these shapes are dictated by the
forces acting on the clouds during the time of flight. In general, extremal (±3) clouds’
shapes can be a bit more... eccentric.

As mentioned above, in our experiment, the role of the imaging beam is played by the
MOT’s horizontal17 beams. In practice, after a ≃ 15 ms time of flight (TOF), these beams
are shined upon the atomic samples, spontaneously emitted photons are then collected
via the vertical porthole of the experimental chambers and redirected towards a water
cooled EM-CCD ANDOR camera18 via a system of achromatic 2 inch lenses whose total
magnification factor is 4

3 . The collection efficiency of this setup is unfortunately quite low
(ϵ≃ 4×10−3) and most photons emitted by the atoms are lost. The details of the imaging
set-up are described in Fig. 1.16.
The camera’s chip sports an 82% quantum efficiency at 425 nm, it is composed of 512×512
active pixels each of which is 16×16 µm large (magnification notwithstanding). The working
temperature of the camera varies between −80◦C and −90◦C , such low temperatures limit
the generation of thermal electrons in the camera registers. These electrons, much like all
other types of spurious electrons, can potentially distort experimental measurements, and
deteriorate the camera’s detectivity limit. This is because both spurious electrons and rele-
vant electrons (i.e. those generated by the fluorescence photons after photoconversion), are
indistinguishable and amplified independent of their physical origin. Therefore, the lower
the count of spurious electrons, the smaller are detectable signals. Other than thermal elec-
trons, clock-induced charges (CIC) and stray light electrons also contribute to the electronic

17The MOT’s vertical beams induce undesirable parasitic reflections on the imaging camera’s chip and
can therefore not be used. During the imaging process, these beams are blocked using a shutter.
18iXon Ultra 897
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camera background. CIC contribution is limited adjusting camera parameters, while stray
light electrons numbers are curbed by carefully shielding the camera surroundings and by
working in complete darkness. In our setup, the number of stray light photons does not
exceed 0.7 photons per pixel for typical exposure times. The main stray light sources are
the lasers which remain turned on (although not directly aimed at the atoms of course)
during the imaging phase: the 532 nm laser, the 851 nm laser and the 1075 nm laser.

Figure 1.17: Fluorescence Imaging typical image (average over 10 images). After the Stern Ger-
lach, we get access to all seven Zeeman populations (Cms in Chap 2)

Comparison between absorption and fluorescence imaging

� The images obtained through absorption imaging are affected by the intensity fluctua-
tions of the imaging lasers. Fluorescence imaging is less so affected by the fluctuations
of the MOT lasers’ power as these are damped by the saturation of the imaging tran-
sition19.

� The signal obtained through fluorescence imaging can be concentrated on fewer num-
ber of pixels by adapting the magnification of the camera while allowing for long
time of flights to better separate the Zeeman clouds. Focusing the clouds signal on
a smaller area limits the impact of the pixel to pixel noise. This can not be done
in absorption imaging for which detailed analysis shows that the potential signal to
noise ratio gains are compensated by the decrease of the clouds’ optical depth.

� Simple arguments reported in [51] show that the ratio between the fluorescence imag-

ing SNR and the absorption imaging SNR is proportional to
√

ϵA
Nσ where N is the

number of atoms, A the true pixel size of the camera, σ the scattering cross section
and ϵ the collection efficiency of the fluorescence optics, showing that fluorescence is
usually better suited for the imaging of small atom numbers.

� Absorption imaging generally requires that acquired images be defringed

� It is harder for big atomic samples to obtain quantitative data using fluorescence
imaging

� The more or less isotropic character of spontaneous emission yields weak fluorescence
signal unless high numerical aperture optics are used. On the other hand the choice
of the optical axis is less stringent for fluorescence imaging than it is for absorption
imaging.

� Detectivity factors are more homogeneous for fluorescence imaging

19For high laser intensities, the fluorescence of a two level atom is proportional to Γ× (Population of the
excited state)≃ Γ

2 and it does not follow intensity fluctuations of the laser anymore when the transition is
saturated.
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Experimental snapshot: Some more photons

The collection efficiency of the current fluorescence route is far from satisfying ϵ = 4.10−3.
To palliate this limitation, another collection circuit was built, the idea being to image the
atoms through different paths on the same and only EM-CCD camera we have. Below a
schematic representation of this alternative route.

Figure 1.18: Schematic representation of the alternative fluorescence collection route. The geo-
metrical length of this alternative route is much bigger than the traditional one L ≫ l .

This endeavor however met with a small measure of success. Indeed, because of the greater
geometrical length of this second path, the position dependent imaging inhomogeneities
became, unforeseen to us, much more severe. In particular while atoms centered on the
optical axis of the set up were adequately imaged, small displacements relative to this axis
made them virtually disappear. This path could therefore not be used to track the dynamics
of the seven spin states.

Figure 1.19: The same MOT, observed through both traditional and alternative fluorescence
paths. The size difference is due to different focusing strategies: the traditional path is focused on
the position of the condensate after time of flight, on the other hand the alternative path’s optical
axis being orthogonal to the fall trajectory of the atoms, the alternative set-up can be focused using

the MOT’s position which explains it small size on the image above.
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2 Experimental noises and data
statistical treatment

You cannot hear music and noise at the same time.
– Henry David Thoreau

As will be shown in Chap. 3, the build up of spin correlations between atoms is enclosed
within the statistical distributions of Zeeman populations. These distributions however are
distorted by various experimental noises. In this -quite technical - chapter we make an
exhaustive inventory of these noises, their physical origin and their impact on the statistical
properties of the Zeeman populations while at the same time giving a detailed account of
the various methods used to apprehend experimental data and, if possible, unravel the role
of the sole dipolar dynamics.

Motivations and main results

It is common in experimental endeavors like ours which are based on the compilation of
a great number of experimental shots that data be plagued with shot to shot fluctuations
of the total signal1. It is also customary to normalize the data in order to get rid of the
adverse impacts of these fluctuations.
In our case for example, each experimental realization provides us with a picture containing
a certain number2 of clouds whose individual signals, hereafter denoted Cms , can be linked
to the atomic Zeeman populations i.e. the number of atoms in these clouds, hereafter
denoted Ams and which we are interested in.
The fact is that these Zeeman gray levels or Zeeman counts (the Cms ) are not the Zeeman
atomic populations (Ams ). Zeeman counts carry with them the trace of the whole detection
chain, which, alas, also contributes to their statistical properties.
These Zeeman counts can be seen as random variables. This is the framework which we
will be using in the totality of this chapter. When normalizing these Zeeman counts by

their sum we obtain new random variables, the normalized Zeeman counts Cms

/∑
m′

s
Cm′

s
.

This process is not trivial, in fact ratios of random variables are generally not well behaved
(see sec. 2.2.6), and there are no generic relationships between the statistical properties of
the non normalized variables and their normalized counterparts; and even if there were, one
would still need to choose how to correct the normalized variables for the other statistical
noises contributed by the detection chain. The statistical properties hence obtained are

arguably different from those of the normalized atomic populations: Ams

/∑
m′

s
Am′

s
.

The main goal of this chapter is to circumvent all of the thorny issues which are brought
about by this precocious normalization process: we want to first get rid of the detection
chain’s contributions then perform the normalization process. And this is exactly what we
achieve.
The results presented in this chapter are based on the systematic use of a single set of

1In our case the shot to shot fluctuations of the total number of atoms in the condensate.
22S +1 = 7 or 14 depending on whether or not we perform a bipartite measurement.
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statistical theorems: the law of total expectation, the law of total variance and the law of
total covariance (see sec. 2.1.3).
Repeatedly using these laws in a reverse chronological way and for each step of the detec-
tion process, we gradually recover the statistical properties (expected value, variance and
covariances) of the non normalized atomic populations (the Ams ). Then using the so called
Delta method which only needs these exact statistical properties as inputs (and not the
knowledge of each exact Ams for each single experimental shot) we obtain the statistical

properties of the normalized populations Ams

/∑
m′

s
Am′

s
which are the variables we are in-

terested in as they are immune to the atom number fluctuations.
We also provide a method for the derivation of the effective gain applied to each and every
experimental picture we took using the amplification feature of our EM-CCD camera. We
use this method to also take into account the fluctuations of this gain in our experiment,
fluctuations which are mostly neglected in generic data treatment protocols.

2.1 Preliminary definitions

2.1.1 Expected values, variances and covariances

The expected value E(X ) of a random variable X with a finite number of outcomes x1, ..., xk

each of which has probability p1, ..., pk of occurring, is a weighted average of all these possible
outcomes. It is defined as

X = E(X ) = x1p1 + ...+xk pk (2.1)

The expected value is also called the first moment of the random variable X .

The variance of a random variable X is the expected value of the squared deviation of X
from its expected value [52].

Var (X ) = E[
(X −E(X ))2] (2.2)

The variance is also called the second centered moment of the random variable X .
In particular if X , Y are two independent random variables:

Var (X Y ) = E(X )2Var (Y )+E(Y )2Var (X )+Var (X )Var (Y ) (2.3)

This property is used in section 2.2.3.
The covariance of two -real valued- random variables X and Y is defined as the expected
value of the product of their deviations from their respective expected values [53].

cov(X ,Y ) = E [(X −E(X )) (Y −E(Y ))] (2.4)

The covariance is also called the central mixed moment of order two relative to the X and
Y variables.
If X and Y are independent variables then cov (X ,Y ) = 0

2.1.2 The conditional expected value

The conditional expected value of a random variable X is its expected value given that a
certain set of ”conditions” represented for example by a second random variable Y is known
to occur. When the conditioning is done using this other random variable Y the conditional
expected value will be denoted E(X | Y ), similarly the conditioning can be done using the
joint probability distribution of two random variables (Y , Z ), in which case we will write
E (X | (Y , Z )) or E (X | Y , Z ).
The conditional expected value can be seen as a random variable or a function: E(X | Y ) :
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x 7→ E(X | Y = x).
Example [54]: Consider the roll of a fair die and let A = 1 if the number is even and A = 0
otherwise. Furthermore, let B = 1 if the number is prime and B = 0 otherwise

1 2 3 4 5 6
A 0 1 0 1 0 1
B 0 1 1 0 1 0

E(A) = 1

2

E(A | B = 1) = 1

3

E(A | B = 0) = 2

3

(2.5)

The conditional variance is defined in the same manner.

2.1.3 Law of total...

...expectation

The law of total expectation (LTE) states that if X is a random variable whose expected
value E(X ) is defined, and Y is any random variable on the same probability space, then

X = E(X ) = E(E(X | Y )) (2.6)

...variance

The law of total variance (LTV) states that if X and Y are random variables on the same
probability space, and the variance of X is finite, then

Var (X ) = E[Var (X | Y )]+Var (E[X | Y ]) (2.7)

...covariance

The law of total covariance (LTC) states that if X , Y , and Z are random variables on the
same probability space, and the covariance of X and Y is finite, then

cov(X ,Y ) = cov(Y , X ) = E(cov(X ,Y | Z ))+cov(E(X | Z ),E(Y | Z )) (2.8)

Graphical intuition

In this subsection we give, through a practical example, a graphical intuition of the law of
total variance, the intuition behind the other laws is similar.

Let A be the random variable corresponding to the atomic population of a certain Zeeman
cloud right after the system’s quench. The distribution of the A variable is supposed (here)
to be a function of the initial preparation angle A = A (θ).
Using the law of total variance, one has that:

Var (A) =Var (E(A | θ))+E(Var (A | θ)) (2.9)

The first term Var (E(A | θ)) represents the noise contribution of the θ variable as it would
be zero if θ was a constant.
The second term is linked to the quantum fluctuations of the Â observable and is non zero
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even when θ is perfectly reproducible.

Below a graphical representation of both terms.

Figure 2.1: Representation of the distribution probability of A as a function of the initial prepa-
ration angle. Both noise contributions are shown. For a classical measurement, the toy Gaussian
distribution above would transform into a Dirac distribution (no quantum fluctuations). We see
then that only the Var(E(A|θ)) contribution would remain. If θ were constant, only the full line
orange curve would be measured, and only the quantum fluctuations of the Â observable would play

a role. In the general case, the total variance is a sum of these two contributions

2.1.4 Recurrent probability distributions

The Poisson distribution noted Pois is a discrete probability distribution that expresses the
probability of a given number of events occurring in a fixed interval of time or space if these
events occur with a known constant mean rate λ and independently of the time since the
last event [55].

X ∼ Pois(λ) ⇔P(X = k) = λk e−λ

k!
(2.10)

For Poisson distributions, E(X ) =Var (X ) =λ.

Normal distributions are a type of continuous probability distribution which play an impor-
tant role in statistics. They are noted N (µ,σ), µ being the expected value of the distribution
and σ its standard deviation.

X ∼N (µ,σ) ⇔P(X = x) = 1p
2πσ

e−
(x−µ)2

2σ2 (2.11)

Bernoulli distribution represent the discrete probability distribution of a random variable
which takes the value 1 with probability p and the value 0 with probability q = 1−p,
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for a fair coin flip p = 1
2 . p is the distribution’s parameter. We also have E(X ) = p and

Var (X ) = pq.

2.1.5 On mixture distributions

In probability and statistics, a mixture distribution is the probability distribution of a random
variable that is derived from a collection of other random variables as follows: first, a
random variable is selected by chance from the collection according to given probabilities of
selection, and then the value of the selected random variable is realized [56].

2.2 Experimental noises and data statistical treatment

Figure 2.2: Chronological hierarchy of experimental noises. The fundamental measurement fluc-
tuations also called in the following quantum projection noise are fluctuations of the measurement
that arise whenever the system is in a superposition of eigenstates of the observable that is measured.
All of these noises will be discussed in the coming pages. For convenience purposes, this discussion

is carried in reverse chronological order. It starts with the imaging noises.

Our journey through noises starts shortly after the atoms have been released from the op-
tical lattice, at this point the different spin states are separated using the Stern & Gerlach
technique, and atoms are visualized through fluorescence imaging as described in Chap. 1 .
It is at this stage that we encounter our first experimental noise

2.2.1 Fluorescence noise and collection efficiency

In this first subsection we relate the statistical properties (first and second (mixed) moments)
of the number of atoms in a given Zeeman cloud to the statistical properties of the number
of spontaneous photons they emit.

Fluorescence is a stochastic phenomenon whose probability distribution for a two level
atom is usually approximated by a Poisson distribution. Departures from this behavior
when photon correlations are taken into account are small [57].
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In the following, we’ll suppose that chromium atoms’ fluorescence obeys a Poisson distri-
bution. Let ñi be number of photons emitted by an atom i during time Θ. We’ll assume
that

ñi ∼Pois
(

fiΘ
)

(2.12)

Where fi depends on the nature of the transitions available to the decay process, as well as
the imaging laser intensity.
Out of all emitted photons, only some travel towards the detector. When a photon is
emitted by an atom it travels in a random direction k⃗. The random variable corresponding
to the number of photons traveling to the detector is given by ni

ni =
ñi∑

k=1
ϵk (2.13)

Where the {ϵk } are independent and identically distributed (iid) Bernoulli variables of pa-
rameter ϵ. ϵ is nothing else but the collection efficiency of our imaging setup.
Notice that the sum’s upper limit is given by ñi , it is itself a random variable, in other
words the randomness of the ni variable stems not only from the ϵk summands but also
from the number of ϵk variables that are to be added together. We will face this kind of
double randomness time and again in the following pages.
Using the results of sec. 2.1.4 we find

ni =
LTE

E

(
E

(
ñi∑
ϵk | ñi

))
Hereñi is temporarily fixed

because of the conditionning: the
number of summands
is no longer random

→= E
(

ñi∑
E (ϵk )

)
= E (ñi ϵ)

= ϵ fiΘ

(2.14)

Var (ni ) =
LTV

Var

(
E

(
ñi∑
ϵk | ñi

))
+E

(
Var

(
ñi∑
ϵk | ñi

))
=Var (ñi ϵ)+E (ñi ϵ (1−ϵ))

= ϵ2 fiΘ+ϵ(1−ϵ) fiΘ

= ϵ fiΘ

(2.15)

and as expected ni is again Poisson distributed.
Consider now a random variable A corresponding to a number of atoms subjected to the
same experimental configuration (all atoms in a given Zeeman cloud for example) then the
fi factor should be the same for all these atoms fi → f .
Further neglecting any sort of interactions between these ensembles of atoms make it so
that the ni variables are independent and identically distributed (ni ∼ n). The sum total
of photons emitted by this assembly of atoms is then N =∑A

i=1 ni ≡∑A
i=1 n (notice that this

sum is also doubly random). In the following Ni will be the number of photons emitted by
the i th Zeeman cloud constituted of Ai atoms.
As it turns out, while the sum of two independent Poisson distributions is also a Poisson
distribution 3, the sum of a random number of Poisson variables is not a Poisson variable,

3Interestingly, according to Raikov’s theorem, the converse is also true: Suppose that a random variable
ζ is Poisson distributed, suppose also that it can be decomposed into the sum ζ= ζ1 +ζ2 of two independent
random variables. Then the distribution of each summand is a shifted Poisson’s distribution.
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indeed let us consider the characteristic function (cf) of the N variable, according to the
law of total expectation

cf(x) = E
(
e i xN

)
= E

(
E
(
e i xN |A

))

= E

 E
(
e i xn A | A

)
︸ ︷︷ ︸

characteristic function of
the nA Poisson variable

A is fixed


cfPoiss(λ)(t ) = eλ(e i t−1) →= E

(
en A(e i x−1)

)
=

∞∑
k=0

(
n

(
e i x −1

))k

k!
E
(

Ak
)

(2.16)

A priori, this characteristic function is not the characteristic function of a Poisson Distri-
bution which again is generally written: cfPoi ss(t ) = eλ(e i t−1) with λ the parameter of the
distribution that is considered. N is therefore not Poisson distributed: The light emitted
by the atoms over a series of shots is not Poisson distributed. Still, using the law of total
expectation, we can calculate the expected value of N

N = E(
ϵ f ΘA

)= ϵ f ΘA = n A (2.17)

Whereas using the law of total variance, we get the variance

Var (N ) =Var

(
A∑
i

ni

)
+E

(
A∑
i
Var (ni )

)
= n2Var (A)+n A

(2.18)

Notice that if A were perfectly determined (Var(A) = 0), N would indeed be Poisson dis-
tributed.
Using the law of total covariance, we get for i ̸= j

cov
(
Ni , N j

)= cov

(
Ai∑

ni ,
A j∑

n j

)

= E
(
cov(

Ai∑
ni ,

A j∑
n j |Ai , A j )

)
+cov

(
E

(
Ai∑

ni |Ai , A j

)
,E

(
A j∑

n j |Ai , A j

))

= E

∑
k,k ′

1k<Ai∩k ′<A j cov
(
ni ,n j

)︸ ︷︷ ︸
0

+cov
(
ni Ai ,n j A j

)
= ni n j cov

(
Ai , A j

)

(2.19)
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Impact of

� Fluorescence noise

N = n A

Var (N ) = n2Var (A)+n A

cov
(
Ni , N j

)= ni n j cov
(

Ai , A j
) (2.20)

These equations give the statistical relationships between the number of photons
emitted by the atoms towards the camera, N , and the number of atoms in the Zeeman
clouds, A.

The photons represented by the variable N are those that are intercepted by the camera’s
chip. The detection process involves the photoelectric process in which lies the second ex-
perimental noise we will analyze.

2.2.2 Photoconversion noise

In this second subsection we relate the statistical properties of the number of atoms in a
given Zeeman cloud to the statistical properties of the electronic signal generated upon con-
version of the photons to electrons in the camera’s chip and before the amplification of this
electronic signal in the gain register.

Let η be the random variable corresponding to the possible conversion of a photon hitting
any given pixel, η= 0.82 at 425 nm.
Let Epx be the random variable corresponding to the number of electrons generated through
the photodetection of Npx impinging photons on pixel px

Epx =
Npx∑

k
ηk (2.21)

In this formalism, the ηk are iid Bernoulli variables of parameter η and variance η(1−η).
Using the law of total expectation:

Epx = η Npx (2.22)

Using the law of total variance

Var
(
Epx

)= η2Var
(
Npx

)+η(1−η)Npx (2.23)

Using the law of total covariance assuming the photoconversions in each pixel to be inde-
pendent

cov
(
Epx ,Epx ′

)= η2cov
(
Npx , Npx ′

)
(2.24)

Where px and px ′ designate two different pixels.
We have considered here that all photoconversion processes are independent of the number
of
impinging photons, this is quite reasonable for small photon numbers and holds in our case
as we are far from saturating the camera and related blooming effects.
Considering now an assembly of pixel illuminated by the light emitted by a single Zeeman
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state, we have

E =∑
px

Epx (2.25)

The average signal due to N impinging photons is given by

E =∑
px

Epx = η N = η n A (2.26)

The variance is

Var (E) =
∑
px

Var
(
Epx

)+2
∑

px<px ′
cov

(
Epx ,Epx ′

)= η2
∑
px

Var
(
Npx

)+η(1−η)N +2
∑

px<px ′
η2cov

(
Npx , Npx ′

)
= η2

∑
px

Var
(
Npx

)+2
∑

px<px ′
η2cov

(
Npx , Npx ′

)
︸ ︷︷ ︸

η2Var(N )

+η(1−η)N

= η2Var (N )+η(1−η)N

= η2
(
n2Var (A)+n A

)
+η(1−η)n A

= η2 n2Var (A)+η n A

(2.27)

Is the camera’s input electronic signal E Poisson distributed?
For E to be Poisson distributed its variance should be equal to its expected value, and
therefore the first term of the previous equation should be negligible.
In our experiment, the total atom number fluctuations are about 10%, while atom numbers
in a single cloud are ≈ 1000 in average which means that Var (A) ≈ 10000. On the other
hand η= 0.8, which implies that for the first term of this equation η2 n2Var (A) to be neg-
ligible, n should be ≪ 1. This is not the case: indeed the number of photons scattered by
an atom (assuming that we strongly saturate the imaging transition and that the MOT
lasers are resonant) in ∆t =1 ms (which is the approximate duration of the imaging pulses)
is ≈ Γ

2 ×∆t ≃ 1.5×104 where Γ= 2π×5×106, taking into account the collection efficiency of
our set-up,ϵ≃ 4.10−3, the number of photons hitting the camera is n ≃ 60 photons. Exper-
imentally we find that the number of photons emitted by a single atom is ≈ 7−13 which
can be accounted for by the detuning of the imaging lasers. This implies in particular that
the E variables distribution are superpoissonian. The contribution of this excess variance
wherein hides the quantum projection noise - that we are looking for - increases with the
detection efficiency.

The covariance between signals originating from two different clouds (i and j ) (the deriva-
tion below is similar to the one detailed in 2.19)

cov(Ei ,E j ) =∑
px

∑
px ′

cov(
Ni ,px∑

η,
N j ,px′∑

η)

=∑
px

∑
px ′
η2cov

(
Ni ,px , N j ,px ′

)
= η2cov

(
Ni , N j

)
= η2ni n j cov

(
Ai , A j

)
(2.28)
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Impact of

� Fluorescence noise

� Photoconversion noise

E = η n A

Var (E) = η2 n2Var (A)+η n A

cov
(
Ei ,E j

)= η2ni n j cov
(

Ai , A j
) (2.29)

These equations give the relations between the input electronic signal of the camera
E and the number of atoms A.

Remark: The structures of the Eqs. 2.20 and 2.29 are the same, this is because the two
noises we have considered here are of the same nature and can be basically grouped together
into a single Bernoulli variable with parameter η n. The amplification noise we discuss next
is of different nature, and it is harder to predict the form these equations will take.

When the photons hit the camera’s chip, some of them are transformed into electrons.
This part we have just described. Afterwards, these so-called photo-electrons are dragged
through the imaging chip into a gain register. Using high voltages and making use of impact
ionization phenomena, the number of electrons is multiplied by a certain average factor we
call gain. Impact ionizations may or may not happen as the electrons travel through the
gain register, making this amplification process a stochastic one. This is the third noise that
we consider.

2.2.3 EM-CCD camera basics, single shot gain computation algorithm, and am-
plification noise

In the first part of this section, we describe the basic architecture of the EM-CCD camera
used in the experiment. This understanding allows us to devise a novel single shot gain
computation algorithm later used for the statistical treatment of experimental data. In
the second part of this section, we relate the statistical properties of the number of counts
(pixel’s grey level intensity) to the atomic ones.

Part 1: EM-CCD camera, from operation principles to single shot gain computation algo-
rithm

We call primary electrons the mixture of all (spurious and photo) electrons reaching the
read-out register (see Fig. 2.3). The particularity of EM-CCD camera lies not in this
register but in the following one, the so called gain register wherein secondary electrons are
spawned in great numbers through impact ionization. Primary and secondary electrons all
add up to a certain number of post-amplification electrons.
Assuming that each pixel charge amplification happens independently of other pixels’
amplification processes and that no spurious electrons are generated in the gain register,
the probability distribution F describing the number of post-amplification electrons, npe ,
is given by [58][59].

F (npe = x) = p0δx,0 +
∑
np

pnp

xnp−1e−
x
g

g np (np −1)!
(2.30)

Where
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� pnp is the probability of getting a total pixel charge (i.e. a certain number of primary
electrons) of np electrons

� g is the mean gain, that is the average of the amplification factors applied to all the
pixels in a single picture

Figure 2.3: Photons impinging onto the camera’s chip give birth to photo-electrons which are in
turn brought down to the gain register together with spurious electrons (thermal electrons, CIC
and such). At this point both kinds are indistinguishable. The black arrows indicate the direction
in which pixels’ charges are moved. In the case at hand there is only one Laurent4spurious electron
before amplification and x = 5 Laurent spurious electrons after amplification, going through the
preamplifier, these 5 Laurent electrons will be divided by 4 giving an integer number of counts
equal to 1 and not 1.25. The story is not finished yet as an additional Gaussian distributed random
number of counts will be added to them when going through the digitization electronics (Read Noise)

After the amplification process these post-amplification electrons are read-out5. The read-
out includes both the passage of electrons through the preamplifier and the analog to digital
conversion.
As we understand it, these operations have two distinct effects, the first one is that every 46

charges are converted into a single count7, this is the effect of the preamplifier (according
to the manufacturer). The second effect is that this count reading is further blurred out by
a Gaussian noise ∼N0,σ whose origin lies in the workings of the digitization electronics.
All in all, the probability that a single pixel’s charge correspond to ”x counts” post readout
is the probability of the digitization electronics producing ”i” counts times the probability
of having not ”4(x − i )” but ”4(x − i )−2”, ”4(x − i )−1”, ”4(x − i )”, or ”4(x − i )+1” electrons
before the preamplifier. This is because all these charges are the same modulo 4 and will
be read as x − i after the preamplifier

5While the terms are similar, this specific reading-out happens not in the read-out register but in the
output node

64.01 according to the manufacturer
7The discrete nature of the charges must be taken into account when making for this dubious ”division

operation”



51

All in all, these counts distribution probability is given by the Cauchy product:

C (x) =
imax∑

i=−imax

[
N0,σ(i )×

1∑
j=−2

F (4(x − i )+ j )

]
(2.31)

Where

� The sum over j accounts for the effect of the preamplifier and the discrete nature of
the charges: here, we assume that the number of charge post division is round up. So
for example 14e−

4 ≡ 15e−
4 ≡ 16e−

4 ≡ 17e−
4 ≡ 4

This theory can be checked against experimental data as C (x) should accurately describe
the distribution of counts across all pixels, as long as the pnp are given.
Using this distribution function, we can surmise the gain effectively applied to each of the
images composing the experimental data.
To do so, we consider image regions which are mostly unexposed8 to the light scattered by
the atoms. We call these regions dark regions as opposed to bright regions that contain
the light scattered by the atoms. The total charge per pixel in these regions is low9 and
is in any case Poisson distributed (i.e. pnp = λnp e−λ

np ! , where λ is the expected value of the

distribution)10.
For these pixels the model above is valid, still it contains too many variables (λ, σ, g ) for
fits to be efficient or reliable. Thankfully, all parameters can be expressed in terms of the
mean gain g and the characteristics of the experimental data. Indeed one can easily show
that (assuming the model to be right)

Law of total expectation→ λg

4.01
=mean of empirical data

Law of total variance→ 2g 2λ

4.012 +σ2 ≃ variance of empirical data

(2.32)

With these equations, which relate λ and σ to g , the fits only depend on the single parameter
g .

8This can be ascertained by checking the signal in said region against dark images, i.e. images collected
by the camera when its internal shutter is closed.

9Which helps in truncating the sum in equation 2.30.
10The total charge per pixel in these regions is given by the sum of the spurious electrons whose distribution

follows a Poisson law and the diffuse light falling on the sensor which also follows a Poisson law. The sum
of two Poisson laws is also a Poisson law.
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Figure 2.4: Fit of the C (x) distribution for a single picture dark region. The experimental data
is given by the black points, the theoretical fit is given by the blue line. g is the gain found by the
fitting process. This is the output of the single shot gain algorithm when applied to a single image.
Notice that this image is an actual experimental image, the single shot gain algorithm does not need
for secondary calibration images to be taken for it to work. The number of pixels in the dark region

is greater than 5000. For this image the gain announced by the software is 30.

Typical gain statistical characteristics as derived by the single shot gain algorithm 11:

g = 24.80

∆g = 0.72

δg = 0.23

σ= 5.03

(2.33)

Where

� δg is the mean fit standard error for g over a series of fits. Notice that δg < ∆g ,
this means that the standard error for individual fits is smaller than the standard
deviation of the gain over the whole series: the shot to shot determination of the gain
is precise enough and can indeed resolve the typical experimental fluctuations of the
gain.

The mean value of the gain g was also checked using more down to earth methods (see
caption of Fig. 2.5), in accordance with the single shot gain algorithm the values displayed
by the camera software proved to be systematically overestimating the real gain applied by
the camera.

11The statistics were derived from a series of 70 pictures taken for a software gain equal to 30, a preamplifier
set to 4.9, and a readout rate of 1MHz
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Figure 2.5: The mean gain applied by the camera was measured for different settings. This
specific measurement relied on the comparison between laser signals’ averages with and without
amplification. The signal averages were computed over hundreds of shots. This measurement is
spoiled by the laser power drifts and fluctuations. Still the results are very much in agreement
with those found in Fig.2.4. Usually the software gain is set to 30, this value overestimates the real
gain (23.36 as found using this method). This method is used as a confirmation test of the single
shot gain algorithm, it cannot however be used to find the effective gain used for a given picture.
Uncertainties on the values of the gain found through this method are also bigger than those of the

single shot gain algorithm.

Part 2: Amplification noise

We have now better understood the workings of the EM-CCD camera, we have in particular
observed that the electron amplification process is a stochastic one, and that it is character-
ized (over a series of pictures) by a mean gain g and a standard deviation ∆g which we can
precisely compute using the single shot gain computation algorithm we have devised. We
now move on to the impact of this amplification process on the various moments which we
are interested in.

After the amplification process electrons are converted into a certain number of counts.
The final count number for any given cloud is given by:

C =∑
px

G(Epx )+RN (2.34)

Where

� G is a stochastic function describing the complex operations happening within the
camera

� RN is a normally distributed random variable accounting for the read noise, this
variable will be taken into account in the following section together with the data
treatment noise
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Considering a single picture (i.e the gain is fixed and is the same for all pixels), we have

E

(∑
px

G(Epx )|(Epx , g )

)
=∑

px

g

4.01
Epx

⇔E

(∑
px

G(Epx )|(Epx , g )

)
≃ g E

4.01

⇒E
(
C |E , g

)≃ g E

4.01

(2.35)

The conditioning here is done on two variables, but obeys the same principles as previous
ones, in particular G(Epx )|(Epx , g ) is a random variable whose, expected value for exam-
ple, will depend on the outcome of the conditioning variables. It is clear for instance that
G(Epx )|(Epx = 5, g = 30) is a random variable that is quite different from G(Epx )|(Epx = 0, g =
30) whose only possible outcome is 0 (if we neglect the RN variable).

In any case, using the law of total expectation and assuming that the gain, g , is independent
from
the input signal we find that

C = g E

4.01
= g E

4.01
= g

4.01
η n︸ ︷︷ ︸

α

A =αA (2.36)

Whereas12, using the law of total variance on 2.35, and property 2.3

Var
(
E
(
C | E , g

))= Var
(
g
)
Var (E)+ g 2Var (E)+Var

(
g
)

E
2

4.012 (2.37)

and following [60], we get the following sequences of equalities

E
(
Var

(
C |E , g

))= E(∑
Var

(
G

(
Epx |E , g

)))
[60] →= E

(
g 2

4.012 E

)
= g 2

4.012 E

(2.38)

12Forgetting about the RN variable which will be included in the following section
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Finally, we find using the law of total variance

Var (C ) =Var
(
E(C |E , g )

)+E(
Var

(
C |E , g

))
= Var

(
g
)
Var (E)+ g 2Var (E)+Var

(
g
)

E
2

4.012 + g 2

4.012 E

Var
(
g
)= g 2 − g 2 −→== g 2Var (E)+Var

(
g
)

E
2

4.012 + g 2

4.012 E

***=
g 2

(
η2 n2Var (A)+η n A

)
+Var

(
g
)(
η n A

)2

4.012 + g 2

4.012

(
η n A

)

= g 2

g 2︸︷︷︸
γ

g 2
(
η2 n2Var (A)+η n A

)
4.012 + Var

(
g
)

g 2

g 2
(
η n A

)2

4.012 + g 2

4.012

(
η n A

)

= γα2Var (A)+ gγ

4.01
αA+ Var

(
g
)

g 2 α2 A
2 + gγ

4.01
αA

= γα2Var (A)+ Var
(
g
)

g 2 α2 A
2 +2γ

g

4.01
αA

= γα2Var (A)+ Var
(
g
)

g 2 C
2 +2γ

g

4.01
C

⇔ γα2Var (A) =Var (C )− Var
(
g
)

g 2 C
2 −2γ

g

4.01
C

⇔Var (A) =
Var (C )− Var(g)

g 2 C
2 −2γ g

4.01C

γα2

(2.39)

Notice that if we neglect the variance on the mean gain g then ∆g = 0 and13, g 2 = g 2, taking
Ei ∼Pois(λ), the third line (***) of the sequence above becomes:

Var (C ) = 2
g 2

4.012 E (2.40)

The factor 2 here is the so-called excess noise factor discussed in previously referenced arti-
cles, in [60] and in most works dealing with EM-CCD amplification. As far as the variance
of the input (E) and output (C) signals are concerned, this factor 2 is the main signature of
the stochastic nature of the amplification process. Put otherwise, if the amplification could
be reduced to a simple deterministic multiplication, the proportionality factor between both

would simply be
g 2

4.012 . The factor 2 in Eq. 2.40 is specific of Poisson distributed E inputs.
The laws that we derive (***) are however more general as they do not need the E input
signal to be Poisson distributed, which it is not as shown in 2.27. Moreover the terms
involving the variance of the gain ∆g and γ are in general not discussed or even taken into
account in the literature.

What about covariances ? In this case, we know that (i ̸= j )

E(Ci C j |Ei ,E j ) = g 2Ei E j

4.012
(2.41)

13Actually γ≃ 1.002
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Therefore

cov
(
Ci ,C j

)= g 2Ei E j

4.012 − g 2Ei E j

4.012

⇔Ei E j = 4.012

g 2
cov

(
Ci ,C j

)+ g 2

g 2
Ei E j

⇔cov
(
Ei ,E j

)= 4.012

g 2
cov

(
Ci ,C j

)+(
1−γ
γ

)
Ei E j

⇔ni n j η ηcov
(

Ai , A j
)= 4.012

g 2

g 2

g 2 cov
(
Ci ,C j

)+(
1−γ
γ

)
4.012

g 2 Ci C j

⇔cov
(

Ai , A j
)= 4.012

γni n j η η g 2 cov
(
Ci ,C j

)+(
1−γ
γ

)
4.012

g 2ni n j η η
Ci C j

⇔cov
(

Ai , A j
)= cov

(
Ci ,C j

)+ (
1−γ)

Ci C j

γαiα j

(2.42)

Impact of

� Fluorescence noise

� Photoconversion noise

� Amplification noise

A = C

α

Var (A) =
Var (C )− Var(g)

g 2 C
2 −2γ g

4.01C

γα2

cov
(

Ai , A j
)= cov

(
Ci ,C j

)+ (
1−γ)

Ci C j

γαiα j

(2.43)

� α= g
4.01η n

� γ= g 2

g 2

These equations give the relations between the output electronic signal of the camera,
i.e. the number of counts C and the number of atoms A.

The number of counts in each Zeeman cloud Ci whose statistics we have just derived is
generally retrieved by fitting the clouds shape with a Gaussian model. This method comes
with inherent uncertainty which adds together with the pixel to pixel noise captured by the RN
variable mentioned in the beginning of this section. It is this uncertainty or data treatment
noise that we now examine.

2.2.4 Data treatment and pixel to pixel noise

Images obtained through repeated experiments contain a certain amount of information
which we can try to retrieve through various methods such as morphological analysis, 2D
fitting and 1D fitting algorithms. Whatever the chosen method, the information retrieved
is not equivalent to the information contained in the images which remains unknown. This
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distortion corresponds to what we call data treatment noise. In our case, we have chosen
to use more or less sophisticated 1D fitting algorithms to retrieve the information enclosed
in the images, the typical distortion14, that is the typical error associated to the determi-
nation of the fit’s parameters. Estimates for the fit’s standard error can be found using
bootstrapping (see [61]).

In any case, the effect of the data treatment process can be modeled by an additional Gaus-
sian noise which, with the readout or pixel to pixel noise that we neglected in the previous
section, still form into a Gaussian noise W ∼N (µ= 0, w)15. The only effect of this Gaussian
noise is to modify the variance of the count populations as it should be equally probable to
underestimate or overestimate the real signal (µ= 0). All in all the atom/count statistical
relationships are given by the following set of equations

Impact of

� Fluorescence noise

� Photoconversion noise

� Amplification noise

� Data treatment and pixel to pixel noise

A = C

α

Var (A) =
Var (C )− Var(g)

g 2 C
2 −2γ g

4.01C −w2

γα2

cov
(

Ai , A j
)= cov

(
Ci ,C j

)+ (
1−γ)

Ci C j

γαiα j

(2.44)

� α= g
4.01η n

� γ= g 2

g 2

� w2 is the average over all the experimental series of 2.

These equations give the relation between the number of counts C and the number of
atoms A corrected for the data treatment and the pixel to pixel noises. In the case of
bipartite experiments the C variables must also be corrected for the bipartition noise
(see Delta method).

Note that w does not affect the covariances, that is because estimation errors and pixel
noise of two different clouds are not correlated.

At this stage, we have finally derived the set of statistical relations between the variables
representing the number of constituents of each Zeeman cloud (the A variables) and the
variables corresponding to the number of counts (the C ones) which are the only ones
that are experimentally accessible. The story however is not over, as moments and
mixed moments of the A variables are yet still affected by many other noises amongst which

14that comes with this method is encapsulated within the fit’s standard errors
15The sum of two Gaussian distributions is a Gaussian distribution.
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are the preparation noise, the dissipative and coherent processes occurring in the lattice and
possibly the bipartition noise (see Fig. 2.2). This bipartition noise will be discussed in chap.
4. In the following section, we will directly tackle the thorny subject of the dissipative and
coherent processes taking place when the atoms are still trapped in the optical lattices.

2.2.5 Contact interactions, tunneling, losses and heating

Contact interactions, tunneling, losses and heating are distinct phenomena which we have
grouped together because all four are concomitant with the unfurling of the dipolar dynamics.

Contact interactions

Before discussing the effects of the contact interactions on our measurements, let us first
introduce some useful operators [62].
First and foremost, the field operator Ψ̂(r) which describes the state of a spin S boson

Ψ̂(r) =


Ψ̂S(r)

.
Ψ̂0(r)

.
Ψ̂−S(r)

 (2.45)

where each of the Ψ̂m obeys bosonic commutation relationships.

The exact form of these operators requires careful consideration of the trapping potential.
For simplicity, we will assume this potential to be isotropic and harmonic along the three
directions and we will therefore expand each of the Ψ̂m(r) operators using the ansatz

Ψ̂m(r) = ∑
nx ,ny ,nz

hnx (x)hny (y)hnz (z)ĥm
nx ,ny ,nz

=∑
n

hn(r)ĥm
n

(2.46)

Where

� hn(r) = 〈r|n〉 = hn(r) = hnx (x)hny (y)hnz (z) are the Hermit functions [63]

hn(x) = 1p
2nn!

(mω

πħ
) 1

4
e−

mωx2

2ħ Hn

(√
mω

ħ x

)
, n = 0,1,2... (2.47)

Where Hn(x) = (−1)nex2 d n e−x2

d xn is the nth Hermit polynomial

� ĥm
n are the bosonic annihilation operators associated to the single particle state

|hn〉⊗ |S,m〉
The annihilation operator ÂF ,M (x, x ′) which removes a pair of particles in the molecular
state |F , M〉 at positions r,r′

ÂF ,M (r,r′) = ∑
m,m′

〈
F , M

∣∣S,m,S,m′〉Ψ̂m(r)Ψ̂m′(r′) (2.48)

The projection operator P̂F on the subspace of the molecular state of total spin F

P̂F =∑
M

|F , M〉〈F , M | (2.49)
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Now to write the interaction potential between two spin S particles. This interaction
potential is nothing but the sum over all molecular potentials

V̂c (r,r′) =∑
F

V̂F (r,r′)

=
2S∑

F=0

4πħ2aF

m︸ ︷︷ ︸
gF

δ(r− r′)P̂F

=
2S∑

F=0
gFδ(r− r′)P̂F

(2.50)

Where aF is the F molecular potential scattering length.
Moreover, for low energy collisions, (i.e. s waves collisional regime), only even potentials
can be retained (this is because they are the only ones to be exchange symmetric, for more
ample justification see [62] for example):

V̂c (r,r′) =
2S∑

Feven=0
gFδ(r− r′)P̂F (2.51)

It can be shown [64], that for this low energy collisions approximation to be valid, the typical
motional energies of the interacting pair should be lower than the centrifugal barrier V0

V0 = 2ħ3√
M 3C6

≃
[65]

kB ×0.8mK ≫ ħω532

2
(2.52)

which is indeed the case as ħω532/kb ≃ 1µK even for ω532 (the oscillation frequency associated
with the 532 nm lattice) as high as 500 kHz.

a6 a4 a2 a0

102.5±0.4 64±4 -7±20 13.5+11
−10.5

Table 2.1: Chromium scattering lengths in units of aB [12].

Finally, the contact Hamiltonian is

Ĥc = 1

2

∑
F ,M

∫
drdr′V̂c

(
r,r′

)
Â†

F ,M (r,r′)ÂF ,M (r,r′) (2.53)

As we are interested in the effects of this Hamiltonian on the atomic states and not the
molecular ones, we will use the alternative [62] form:

Ĥc (t ) = 1

2

∫
dr

∑
m1,m2,m′

1,m′
2

C m1,m2

m′
1,m′

2
Ψ̂†

m1
(r)Ψ̂†

m2
(r)Ψ̂m′

2
(r)Ψ̂m′

1
(r) (2.54)

We can expand this Hamiltonian into a sum of harmonic level dependent elementary two
body contact Hamiltonians as such

= ∑
m1,m2,m′

1,m′
2

1

2
C m1,m2

m′
1,m′

2

∑
n1,n2,n′

1,n′
2

∫
drh∗

n1
(r)h∗

n2
(r)hn′

2
(r)hn′

1
(r)ĥm1,†

n1
ĥm2,†

n2
ĥ

m′
2

n′
2

ĥ
m′

1

n′
1

= ∑
m1,m2,m′

1,m′
2

∑
n1,n2,n′

1,n′
2

1

2
C m1,m2

m′
1,m′

2
ηn1,n2,n′

1,n′
2
ĥm1,†

n1
ĥm2,†

n2
ĥ

m′
2

n′
2

ĥ
m′

1

n′
1

(2.55)

Where
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� ηn1,n2,n′
1,n′

2
= ∫

drh∗
n1

(r)h∗
n2

(r)hn′
2
(r)hn′

1
(r)

� C m1,m2

m′
1,m′

2
=∑

F gF 〈S,m1,S,m2| P̂F
∣∣S,m′

1,S,m′
2

〉=∑
F gF 〈S,m1,S,m2|F , M〉〈F , M

∣∣S,m′
1,S,m′

2

〉
The intrasite contact dynamics can be computed using the full time dependent Hamiltonian
as given by

Ĥ(t ) = Ĥc (t )+ Ĥω (2.56)

Where Ĥω accounts for the kinetic part of the total Hamiltonian and the trap’s potential.
We are however not interested in the full contact driven intrasite dynamics, instead we want
to derive the typical timescales at which contact interactions affect the local spin projec-
tions of the doublons.
According to Eq. 2.55 these timescales are directly given by the 2h

/(
C m1,m2

m′
1,m′

2
η∗n1

η∗n2
ηn′

2
ηn′

1

)
quantities. In particular, assuming that the atoms are initially loaded in the ground state
of the harmonic
oscillator, the dynamics onset is governed by 2h

/(
C m1,m2

m′
1,m′

2
η∗n1

η∗n2
η0η0

)
.

Computing these coefficients, we find that the contact driven dynamics timescales are on
the order of a few hundred microseconds. We can therefore surmise that it will, when cou-
pled to the other phenomena discussed below, contribute to the increase of the variability
of the various measurements, even at very short times.

Tunneling

The effects of transport phenomena in the optical lattice are hard to assess - quantitatively
speaking. In general still, tunneling changes the interaction environment of the hopping
atom and therefore the subsequent evolution of its internal degrees of freedom. Tunneling
however is suppressed in the Mott phase and related effects are quite negligible. In fact,
experiments carried out using the bipartition set-up (see Chap. 4) which are not described
in this manuscript have shown that tunneling is quite negligible, even at times exceeding
400 ms when the atoms are left in the

∣∣7S3,ms =−3
〉
state16 as soon as the depth of the

lattice is greater than 8Er ,5325. Various intensity and magnetic gradients also contribute to
the reduction of tunneling by making it systematically non resonant.

Heating

For a two level atom in a far-off resonance trap, photon scattering related heating occurs

at rate Γheat = 2ErΓs.e ∝ Ω2
L

δ2
L
[47]. In our case, it was evaluated to 20 nK.s−1. For 100 ms ex-

periments, this leads to an increase of the temperature ∆T = 2 nK which is small compared
to the BEC’s temperature (50 nK). Heating leads to an increase of the kinetic energy of
the atoms and facilitates tunneling between sites, it can therefore increase the variability
of the dynamics.

Losses

Losses increase the variability of the dipolar dynamics and related characterizations (vari-
ance of the magnetization, and other correlators introduced in Chap. 3). The basic principle
behind this is represented in the figure below

16The timescales of tunneling may depend on the tilting angle of the spins as interactions also do
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Figure 2.6: In the figure above, the loss of a doublon (through local dipolar relaxation) in the
state

∣∣ms,1 : 3,ms,2 : 3
〉
produces a state whose magnetization M is different from the initial state’s

magnetization. As the state in which doublons are lost is random, the post-dynamic state obtained
at the end of each experiment we carry out is different even though the initial state is the same,
in particular, the statistical properties of this end-state carry some level of variability within them
which is due entirely to loss events. This variability affects all of the properties of our system,
not only the magnetization. Of course this scenario builds on the fact that doublons and singlons
interact for some time, if they didn’t the properties of the end state would be independent of any

doublons related processes.

The effect of losses have been studied through exact numerical simulations on a 2×6 pla-
quette, composed of 8 singlons and 4 spin 6 particles representing doublons. The results are
detailed in appendix D. The main conclusion of this appendix being that while losses do
mitigate the development of correlations to some extent, their effect is not strong enough to
prevent us from observing their development, in accordance with the experimental results
of Chap. 3 and 4

These four phenomena modify the unfurling of the dynamics between atoms which would
otherwise be solely dictated by the initial state in which they are prepared. As it turns out
this state’s preparation is not perfectly reproducible. This is what we call the preparation
noise

2.2.6 Preparation noise

In this section we focus on the preparation noise in which we include both the RF noise and
number noise. We discuss the causes and the effects of these noises, and briefly touch on
the subject of magnetic gradients. We then review the several data treatment schemes that
can be used to deal with these noises as far as the statistical aspect is concerned.

The RF noise

The RF noise finds its root cause in the shot-to-shot variability of the π
2 RF pulse used

to prepare the atomic sample in its initial state, this variability is ultimately linked to two
factors: first is the imperfect reproducibility of the radio field pulse itself, second are the
instabilities (drifts and fluctuations) of the dominant magnetic field which are caused by
external factors such as the slow drifts of the earth’s magnetic field and the erratic contri-
butions of power line generated magnetic fields.
The reproducibility of the RF pulses was improved in several ways, for example RF pulses
were previously characterized by their duration and the Rabi frequency (Ω of the RF
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field)would be adjusted so that the spin rotation is completed within this duration (5 µs in
the case of a π

2 rotation).
Currently, the pulses are characterized by the number of RF periods: every experimental
pulse correspond to the same number of RF periods. This ensures that the starting phase
of the pulses is always the same. This also allows for early switch on and late switch off of
the electronic switches (see Chap. 1 Fig. 1.12) and therefore for cleaner implementations
of the RF pulses (see Fig. 2.7).

Figure 2.7: Comparison between early and late switch on/off of the electronic RF switches. In the
first case, the RF pulse is defined by the number of RF periods, the starting phase of the pulses is
always the same from shot to shot and the electronic switches can be switched on before the beginning
of the pulses, in this case the flanks of these pulses are well defined and are always the same shot to
shot. In the second case, the activation and deactivation of these switches defines the duration of
the RF pulse and therefore the initial tilt angle of the spins. In this case however, the edges of the
pulse display bigger variations from shot to shot which is detrimental to the reproducibility of the
initial state. The shape of these pulses can be observed experimentally using a small pick-up coil

close to the atomic chamber.

Increasing the Rabi frequency to values as high as 100 kHz also allowed for pulses more
insensitive to magnetic inhomogeneities and fluctuations.
The drifts of the dominant magnetic field are fought against by a frequent calibration of the
RF pulses. As for its fluctuations, they can be prevented using various locking schemes or
through active control techniques which counter the effects of well identified fluctuations,
for example the fluctuations of the Larmor frequency originating from the landlines’ 50 Hz
can be suppressed by a factor greater than 10 dB by feeding correction coils with 50 Hz
current of appropriate amplitude and phase. The active control techniques are still being
tested and were not implemented for the data that is presented in the Chaps. 3 and 4.
The atoms’ preparation is also affected by remnant magnetic gradients which constitute
a systematic source of inhomogeneity as far as spin preparation is concerned, this effect
however is small as we now show.
Because of the magnetic gradients, the spins’ Larmor frequency which is dictated by the
local magnetic field amplitude displays a spatial dependence which in turn makes the radio
field frequency detuning space-dependent: δ→ δ(z). Ultimately, this makes for a spatially
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dependent generalized Rabi frequency (see chap.1)

ΩG (z) =
√
Ω2 +δ(z)2 (2.57)

This spatial dependence however is negligible, indeed in our experiment, the horizontal (ZQ
plane) and vertical gradients were estimated to 26 mG.cm−1 and 117 mG.cm−1 respectively.
For simplicity we will take ∇.B = 100 mG.cm−1.
An upper bound for the Mott state spatial extension being ∆Mot t = 10 µm, the local detuning
should be bounded by

∆Mot t∇B = 10−4G≡ 280Hz. (2.58)

Which for the usual Rabi frequencies we work with (50 -100 kHz) makes for negligible
deviations of ΩG (z) and therefore for negligible inhomogeneities of preparation.

The number noise

The number noise corresponds to the shot-to-shot fluctuation of the number AT of atoms in
the condensate ( typically, ∆AT ≃ 8% within a single experimental series). This variability
is due to the fluctuations of experimental parameters, mainly lasers’ frequencies and power
levels as well as the evergoing thermalization of the experiment. Amongst all technical
noises, bipartition - when performed - and atom number noises have the heaviest impacts
on absolute populations’ variability.

Correction of the preparation noise at time tdyn = 0 ms

Much like other noises, one can try to get rid of the influence of the preparation noise through
the use of total expectation, variance and covariance laws. In the case of covariances for
example, one writes

cov
(

Ai , A j
)= E

(
cov

(
Ai , A j |AT ,θ

))︸ ︷︷ ︸
The quantum fluctuations contribution

hides in this term

+ cov
(
E(Ai |AT ,θ),E(A j |AT ,θ)

)︸ ︷︷ ︸
Additional covariance contribution

due to the preparation noise

(2.59)

Where θ is the random variable corresponding to the spin initial tilt.
Strictly speaking, this equation is only valid for 0 ms dynamics. Indeed, it is a fact that all
phenomena occurring in the lattice, losses most notably, result in a shot-to-shot variability
of the exact post-dynamics end-state even when the initial state is perfectly reproducible.
It is therefore hard to assess how perturbations of the initial state (due to the preparation
noise) translate when considering the final one, in particular the A entity should not be
a random variable anymore but a statistical mixture 2.1.5 indeed, which, a priori, makes
the E(Ai | θ) quantity hard to interpret. The same could have been said of other noises, the
number of spontaneously emitted photons by an atom for example, is a a statistical mixture
of different Poisson laws: for each shot, one must choose the parameter of the Poisson law
(which is dictated by, say, the power of the MOT lasers at that time), then the number of
emitted photons according to this law - Eqs. 2.2.6 take this point into account. This aspect
is even more glaring here as the power of the lasers can be more or less stabilized, whereas
the details of the physical phenomena occurring in the lattice are harder to apprehend.
In any case at time tdyn = 0 ms at least, to model the effects of the RF noise, we will assume
that the fluctuations of the initial tilt angle θ are normally distributed 17:

θ ∼N
(π

2
,∆θ

)
(2.60)

17The standard deviation ∆θ of the θ pulse has been evaluated to 2.5×10−3 rad.
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In this case, the RF noise’s contribution to the total covariance can be computed exactly as
the expected populations are differentiable functions of the θ parameter (for 0 ms dynamics
times). More specifically, without bipartition, the initial expected populations are

E
(

Ams |AT ,θ
)= [(

6

3+ms

)[
sin2

(
θ

2

)]3+ms
[

cos2
(
θ

2

)]3−ms
]

AT = ams (θ)AT (2.61)

Where AT is the total number of atom and ams the fractional population in the ms Zeeman

cloud. Writing a′
ms

= d a
dθ and a′′

ms
= d 2a

dθ2 and independence as well as random variables Taylor
expansions, we have

cov
(
E
(

Ams |AT ,θ
)

,E
(

Am′
s
|AT ,θ

))= ams

(π
2

)
am′

s

(π
2

)
Var (AT )+a′

ms

(π
2

)
a′

m′
s

(π
2

)
Var (θ) A2

T

+
(

am′
s

(π
2

) a′′
ms

(
π
2

)
2

+ams

(π
2

) a′′
m′

s

(
π
2

)
2

)
Var (θ)Var (AT )

(2.62)

This result encapsulates several intuitive facts: the first one is that the number noise cor-
relates atomic populations positively (ams

(
π
2

)
am′

s

(
π
2

)> 0). The second fact is that, at θ = π
2

the RF noise correlates Zeeman populations corresponding to same sign spin quantum num-
bers whereas it anticorrelates Zeeman populations with spin quantum numbers of opposite

signs (sign
(
a′

ms

(
π
2

)
a′

m′
s

(
π
2

))= sign(msm′
s)). The last term is a second order term which we’ve

included for completeness, it can be neglected.
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Impact of

� Fluorescence noise

� Photoconversion noise

� Amplification noise

� Fit noise

� Preparation Noise @ tdyn = 0 ms

A = C

α

Var (A) =
Var (C )− Var(g)

g 2 C
2 −2γ g

4.01C −w2

γα2 −a2
(π

2

)
Var (AT (0))−a′2

(π
2

)
Var (θ) AT (0)2

cov
(

Ai , A j
)= cov

(
Ci ,C j

)+ (
1−γ)

Ci C j

γαiα j
−ai

(π
2

)
a j

(π
2

)
Var (AT (0))−a′

i

(π
2

)
a′

j

(π
2

)
Var (θ) AT (0)2

(2.63)

� α= g
4.01η n

� γ= g 2

g 2

These equations give the relations between the number of counts C and the number
of atoms A at time tdyn = 0 ms corrected for the preparation, the data treatment and
the pixel to pixel noises. In the case of bipartite experiments the C variables must
also be corrected for the bipartition noise (see Delta method).

Remark: If we allow for variations of the fi factor as possibly caused by variations of
the imaging beams’ powers from shot to shot, the n variable corresponding to the num-
ber of photons emitted by an atom is no longer Poisson distributed. In this case the
Var(C )−Var(g)

g 2 C
2−2γ g

4.01 C−w 2

γα2 and the
cov(Ci ,C j )+(1−γ)Ci C j

γαiα j
terms in Eqs. 2.62 change into

Var(C )−Var(g)
g 2 C

2−2γ g
4.01 C−γαχC−w 2

γα2 and
cov(Ci ,C j )+(1−γ−γχi j )Ci C j

γαiα j
respectively χi j = cov(ni ,n j )

ni n j
, χ =

Var(n)−n
n2

Correction of the RF noise at longer interaction times

The variance of the magnetization
In the third chapter of this manuscript, we track the evolution of the spin correlations in
the evolution of the magnetization’s variance. It is therefore necessary to go beyond the
tdyn = 0 case presented above. To do so we claim that the contribution of the RF noise to
the fluctuations of the magnetization is conserved throughout the dynamics modulo the
change in the number of atoms. This is because the variance of the magnetization itself is
conserved at long times to a pretty good approximation despite the loss of doublons. This
claim is supported by the following arguments:

�

[
Ŝz , Ĥsec

] = 0̂ which implies that the magnetization and all its statistical moments
remain constant once the doublons are lost.
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� The spatial segregation of singlons and doublons in the Mott state limits the interac-
tion between singlons and doublons.

� Doublons are lost relatively fast (in 10 ms which is similar to dipole dipole interactions
timescales) which also limits spin exchange between singlons and doublons.

The conservation of the magnetization entails that the RF noise’s contribution, hereafter
denoted ∆RF , is also somehow conserved throughout the evolution, modulo the change in the

number of atoms. More specifically, when correcting the normalized variance Var
(
Ŝz

)/
AT

we assume that

∆t>0
RF =∆t=0

RF
AT (t )

AT (0)
(2.64)

At time tdyn = 0 ms the contribution of the RF noise ∆t=0
RF is estimated by subtracting to

the variance of the magnetization its theoretical value which is 3
2 AT .

Other observables

This section is not meant to provide tight or realistic bounds for the contribution of the RF
noise and should be seen as more of preliminary approach towards this objective.
Other observables such as the populations and the system’s partial magnetizations are not
conserved and it is harder to claim that the contribution of the RF noise to their fluctuations
remains unchanged as the system evolves. Still, in the words of von Neuman, what cannot
be predicted might still be controlled. One possible way of bounding the effect of the RF
noise when considering observables that do not commute with the Hamiltonian lies in the
unitarity of the evolution:
Let

∣∣ψ(0)
〉
be the single particle initial state prepared in the experiment after an imperfect

π
2 pulse. ∣∣ψ(0)

〉= e−
i
2 ( π2 +ϵ)Ŝy |−3〉z (2.65)

Where ϵ represents the difference of the initial tilt angle to π
2 . In first order in ϵ the previous

equation writes: ∣∣ψ(0)
〉= [

e−
i
2 ( π2 )Ŝy e−

i
2 (ϵ)Ŝy

]
|−3〉z

=
[

e−
i
2 ( π2 )Ŝy

(
1− i

2
ϵŜy

)]
|−3〉z

= |−3〉x −
1

4
e−

i
2 ( π2 )Ŝy ϵŜ+ |−3〉z

= |−3〉x −
1

4
e−

i
2 ( π2 )Ŝy ϵ |−2〉z

= |−3〉x︸ ︷︷ ︸∣∣∣ψ π
2

(0)
〉−

1

4
ϵ |−2〉x︸ ︷︷ ︸
|ϵ(0)〉

(2.66)

Note that the contribution of the perturbation |ϵ(0)〉 is initially orthogonal to the ideal

initial spin state
∣∣∣ψ π

2
(0)

〉
.
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When considering an initial many body state with N particles, |Ψ(0)〉, we have

|Ψ(0)〉 =⊗N
i=1

∣∣ψ(0)
〉

i︸ ︷︷ ︸
Ψ π

2
(0)

=⊗N
i=1

∣∣∣ψ π
2

(0)
〉

i

+|ϵ(0)〉1

∣∣∣ψ π
2

(0)
〉

2
. . .

∣∣∣ψ π
2

(0)
〉

N︸ ︷︷ ︸
|ϵ1(0)〉

+
∣∣∣ψ π

2
(0)

〉
1
|ϵ(0)〉2 . . .

∣∣∣ψ π
2

(0)
〉

N︸ ︷︷ ︸
|ϵ2(0)〉

+ . . .

+
∣∣∣ψ π

2
(0)

〉
1

. . .
∣∣∣ψ π

2
(0)

〉
N−1

|ϵ(0)〉N︸ ︷︷ ︸
|ϵN (0)〉

+Higher order terms in |ϵ(0)〉

(2.67)

Because |ϵ(0)〉 is orthogonal to
∣∣∣ψ π

2
(0)

〉
the norm of the |ϵi (0)〉 states is ∥ϵ(0)∥ = ∥ϵ∥ = |ϵ|

4 .

In the following we assume that the evolution of the |ϵi (0)〉 states is independent of i :
|ϵ(0)〉i ≡ |ϵ(0)〉. In this case, dropping the higher order terms and normalizing the resulting
state, the evolution of |Ψ(0)〉 at first order is given by

|Ψ(t )〉 = e i t Ĥ/ħ
(
α

∣∣∣Ψ π
2

(0)
〉
+α∑

i
|ϵi (0)〉

)
translational invariance−→=αe i t Ĥ/ħ

∣∣∣Ψ π
2

(0)
〉

︸ ︷︷ ︸∣∣∣Ψ π
2

(t )
〉

+αN e i t Ĥ/ħ |ϵ(0)〉︸ ︷︷ ︸
|ϵ(t )〉

(2.68)

Where α is the normalization constant, α= 1p
1+N(ϵ/4)2

.

If we consider now an observable Ô that does not commute with the Hamiltonian, for
example Ŝ A

z (or Âm), we have

〈Ψ(t )|Ô |Ψ(t )〉 =α2
〈
Ψ π

2
(t )

∣∣∣Ô∣∣∣Ψ π
2

(t )
〉
+α2N

〈
Ψ π

2
(t )

∣∣∣Ô∣∣∣ϵ(t )
〉
+α2N

〈
ϵ(t )

∣∣∣Ô∣∣∣Ψ π
2

(t )
〉
+α2N 2 〈ϵ(t )|Ô|ϵ(t )〉

(2.69)

If we let |xi 〉 be an orthonormal eigenbasis of Ô such that Ô |xi 〉 = oi |xi 〉, |ϵ(t )〉 = ∑
i ϵi |xi 〉

and
∣∣∣Ψ π

2 (t )

〉
=∑

i ψi |xi 〉 then we can write

(Cauchy Schwarz) −→
∣∣∣〈ϵ(t )

∣∣∣Ô∣∣∣Ψ π
2

(t )
〉∣∣∣≤ ∥ϵ∥

∥∥∥Ô
∣∣∣Ψ π

2
(t )

〉∥∥∥
Ô |xi 〉 = oi |xi 〉 −→≤∥ϵ∥

∥∥∥∥∥∑
i
ψi oi |xi 〉

∥∥∥∥∥
≤ ∥ϵ∥

√∑
i
ψ2

i o2
i

≤ ∥ϵ∥
√〈

Ô2
〉∣∣∣Ψ π

2

〉

(2.70)
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In the case where Ô has zero expectation value - for example Ô = Ŝ A
z - Eq. 2.70 can be

rewritten ∣∣∣〈ϵ(t )
∣∣∣Ô∣∣∣Ψ π

2

〉∣∣∣≤ std

(
Ô∣∣∣Ψ π

2

〉)
∥ϵ∥ (2.71)

To benchmark this approach we can apply it to the Ŝz operator at time tdyn = 0 ms, as in
this case we know the exact effect of the RF noise through Eqs. 2.63. These equations
predict that the contribution of the RF noise to the variance of the magnetization is

3∑
m=−3

3∑
m′=−3

mm′a′
m

(π
2

)
a′

m′

(π
2

)
Var (θ) N 2 (2.72)

For a total number of atoms N = 10000 and a standard deviation std(θ) = 5×10−3 we find a
numerical value of 22500.

If we compute the 2.71 bound using the same inputs, and assuming that std
(
Ŝz

)∣∣∣Ψ π
2

〉 =
√

3N
2

we find (
2α2N∥ϵ∥

√〈
Ô2

〉∣∣∣Ψ π
2

〉)2

= 2.5×106 ≫ 22500 (2.73)

which makes this bound mostly irrelevant. More realistic bounds could be obtained by

properly bounding the variance of observable Ô instead of bounding the term
∣∣∣〈ϵ(t )

∣∣∣Ô∣∣∣Ψ π
2

〉∣∣∣,
which only provides a rough overestimation of the effect. Proper bounding of the variance
could be done using equations similar to 2.70 and general inequalities such as the Bathia
Davis one. More realistic bounds should also keep higher order terms in ϵ as the first order
approximation is obviously too crude. The contribution of these terms is not negligible
given that their number grows as N !

t !(N−t )! where t is the highest order of the development.
It would also be desirable for this bound to have the same scaling as the theoretical effect
at time tdyn = 0 ms (i.e. ∝ N 2 instead of N 3).

Correction of the number noise at longer interaction times: The Delta method

In order to get rid of the adverse impacts of the number noise, it is customary to normalize
each data point by its total signal. This normalization process when performed on the
initial data enclosed in the images (the Ci variables) is not entirely satisfactory as it is
hard if not impossible to rigorously relate the various moments of the Ai∑

j A j
variables which

represent the normalized atomic populations and the Ci∑
j C j

variables which represent the

normalized count populations18. This is because of the many stochastic processes involved
in the detection chain (e.g. fluorescence, EM-CCD amplification...) which also contribute
additional statistical relationships, so to speak, between count populations which do not
exist between atomic ones. In general anyway, ratios of random variable are not necessarily
well behaved and one must be careful when dealing with this kind of variables19.
In our case, if we relent on normalizing count populations from the get go and first get rid
of the impacts of the detection chain (through Eqs. 2.44), we can still make use of random

18This was in fact the route that was chosen for the presentation of our data in our article [66], wherein
strictly speaking we look at the normalized counts distribution corrected for noises like the RF noise, the
shot noise and so forth. here we present an alternative data treatment path
19One most striking illustration of the problems that crop up when dealing with quotient variables is

the fact that the ratio of two Gaussian distribution (a Cauchy distribution) has no defined mean, variance
or higher moments. This is because the Gaussian distribution at the denominator has a non negligible
probability density in a neighborhood of 0. In practice, one can circumvent these problems by focusing on
a restricted data sets (not containing 0).
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variables
Taylor expansions to have a look at the statistical properties of the normalized atom pop-
ulations.
For example the expected value of the normalized populations E

(
A

AT

)
is found using second

order Taylor approximations

E

(
A

AT

)
≃ E(A)

E(AT )
− cov(A, AT )

E(AT )2 + E(A)

E(AT )3Var (AT ) (2.74)

The generalization of these expansions to the variance covariance matrix is called Delta
method, it is also a second order approximation and is often used with the sole assumption
that the variance of relevant variables is ”small” 20 [67]. It can be used like so:
First let us denote

g : x⃗ = (x, y , z) 7→
( x

z
,

y

z

)
= (

g1(⃗x), g2(⃗x)
)

such as

g (Ai , A j , AT ) = (
g1

(
Ai , A j , AT

)
, g2

(
Ai , A j , AT

))= (
Ai

AT
,

A j

AT

)
We have

∂g1

∂x
= 1

z
,

∂g1

∂z
= −x

z2 ,
∂g2

∂y
= 1

z
,

∂g2

∂z
= −y

z2

The Jacobian of g at point x⃗ = (x, y , z) is given by

∇g (x, y , z) =
( 1

z 0 − x
z2

0 1
z − y

z2

)
so that

∇g (Ai , A j , AT ) =

 1
AT

0 − Ai

AT
2

0 1
AT

− A j

AT
2


Then

Cov[g (Ai , A j , AT )] = Cov

(
Ai

AT
,

A j

AT

)
≈∇g (Ai , A j , AT )Cov[(Ai , A j , AT )]∇g (Ai , A j , AT )T

where Cov[(Ai , A j , AT )] is the covariance matrix of Ai , A j and AT

Below we present a brief numerical study of the validity of these methods at time tdyn = 0
ms.

In this numerical study we have simulated the outcome of the experiment at time t = 0 ms
when tainted by a given number noise. More specifically, we have set the number of atoms
to be normally distributed AT ∼ N (10000,∆AT ). Much like the actual experiment we’ve
divided the numerical results into packets of size 50, which is the average length of real
experimental series. For each of these packets we compute

� The variance covariance matrix of the normalized populations as given by the Delta
method (which, from now on, we will call Delta populations)

� The variance covariance matrix of the first order populations, that is the popula-
tions we find when we drop off all second order terms and beyond from the delta
development

20Small enough so that following terms, which involve higher statistical moments, in the development
become negligible
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� The variance covariance matrix of the true normalized populations

In Fig. 2.8, we compare the average of the variance covariance matrices thus found for the
true normalized and the Delta populations to the theoretical variance covariance21 matrix
expected at time tdyn = 0 ms. For two matrices U , V , this distance is given by:

Di st (U ,V ) =
√∑

(ui , j − vi , j )2 (2.75)

This distance can be expressed in terms of percentage

Di st%(U ,V ) =
√∑

(ui , j − vi , j )2√∑
(ui , j )2

(2.76)

In Fig. 2.9, we show that first order approximations cannot reproduce the results obtained
through normalization.

Figure 2.8: The yellow line represent the distance between the variance covariance matrix of the
true normalized populations and the theoretical variance covariance matrix as a function of the num-
ber of experimental packets or sets taken into account, each packet contains 50 experimental shots.
The blue line represents the distance between the variance covariance matrix of the Delta popula-
tions to the theoretical variance covariance matrix. The green line represents the results that would
be found for a perfect experiment, that is an experiment affected by the sole quantum projection
noise. All results are extremely similar which testifies to the quality of the Delta approximation, and
to the fact that the results are limited by the convergence of the statistical estimates not by Delta
scheme. This detail is of importance, strictly speaking experiments allow us to compute estimators
of the various moments related to the atomic signals. These estimators’ rate of convergence depend
on the probability distribution of these signals. They make for irreducible estimation uncertainties

of the true moments we are interested in.22

21The matrix M whose elements are given by Mms ,ms′ = ams (δms ,ms′ −ams′ ), see Chap. 3
22In fact for larger experimental sets, the Delta method shows a slight over correction
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Figure 2.9: The green line represents the distance between the variance covariance matrix of
normalized populations and the theoretical variance covariance matrix as a function of ∆AT when
the Delta method is truncated to first order. The inset shows the results for normalized populations
and Delta populations. The results are obtained using 8 packets of 50 shots each, which is similar
to the actual experiment. The results show that the second order corrections are necessary in
reproducing the normalization process. The results also show that the Delta method is robust

against number noises with standard deviations greater than ours ( up to 20% ).

For bipartite measurements, each family is normalized by the total number of atom of the
family itself and the cross covariances are taken care of by considering g (x, y , w , z) = { x

w , y
z

}
The Jacobian of g at point x⃗ = (x, y , w , z) is given by

∇g (x, y , w , z) =
( 1

w 0 − x
w 2 0

0 1
z 0 − y

z2

)
(2.77)

so that

∇g (Ai ,B j , AT ,BT ) =

 1
AT

0 − Ai

AT
2 0

0 1
BT

0 − B j

BT
2

 (2.78)

Side notes:

� Eqs. 2.63, the delta method (as well as the partial covariance presented in C) are
handy statistical methods in that they only require the knowledge of the statistically
significant quantities (the averages, variances and covariances of the intensity counts)
to be applied, the exact knowledge of each data point value is not necessary.

� Another possible data treatment scheme consists in the computation of partial co-
variances. This scheme aims at the suppression of uninteresting common mode corre-
lations between the A variables, common mode correlations being in the case at hand
those indirect correlations generated by the variations of the AT variable23. This is
done by projecting the A variables onto what can be understood as a hyperplane
orthogonal to the AT variable. This concept is discussed at length in appendix C.

At this point, using Eqs. 2.63 and the Delta method, we have in principle gotten rid of the
statistical influence of all tractable noises - we could think of. It is in these refined statistics

23When the number of atom increases, the magnitude of the A variables also increases which makes for
trivial positive correlations
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that we will track the growth of spin correlations. This is the subject of the next chapters.
Below, the reader will find some other considerations on subsidiary statistical matters.

2.3 Other statistical considerations

The Delta method as well as Eqs. 2.63 are sensitive to the precise estimation of the counts
distributions various statistical moments. These moments can easily be misestimated be-
cause of trivial phenomena such as signal drifts and signal jumps. Below we explain how
these phenomena are addressed in the data treatment.

2.3.1 On drifts and instabilities of the total signal

Long experimental series are subject to drifts and other instabilities which spoil the esti-
mation of statistical relationships between atomic populations. Drifts of a given Zeeman
signal can be modeled, within a given experimental series, as a function of the time t by
the following Ai (t ) stochastic drift [68]

Ai (t ) = Ai (0)+ai t (2.79)

Where

� Ai (0) is the random variable corresponding to the atomic signal in cloud i at time
t = 0

� ai is a cloud dependent drift coefficient

These drifts are due to the slow thermalization of the experimental set-up.
We compute the expected value of this drift process over a time duration ∆t =Number of shots︸ ︷︷ ︸

Ns

×

cycling time︸ ︷︷ ︸
δt

as follows

E∆t (Ai (t )) = 1

Ns

Ns∑
k
E (Ai (0)+ai kδt )

= 1

Ns

N∑
k
E (Ai (0))+ai

δt

Ns

N∑
k

k

≃ E (Ai (0))+ ai∆t

2︸ ︷︷ ︸
systematic deviation

(2.80)

Variances and covariances are computed in much the same manner and show systematic
deviations from the relevant distribution which is that of Ai (0).
To get rid of the trivial influence of these drifts, we subtract any linear contributions from
the total signal sequence of the experimental series that is considered (see Fig. 2.10). In
bipartite experiments, each family’s signal is corrected individually.
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Figure 2.10: The data is corrected for atom number drifts by deleting linear contribution to said
number through time. To do so we first fit the data with a function of the form at +b, we then
subtract this contribution to the data before adding the initial average signal of the series to the
data back again. For bipartite experiments, it is not sufficient to correct for the total signal, it is
necessary that each family’s signal drift be corrected for independently, as opposite drifts caused by

the bipartition can cancel out making for a total signal constant through time.

In much the same way, sudden signal jumps lead to erroneous estimations of the statistical
relationships between the A variables.

Figure 2.11: When an experimental sequence of shots displays a signal jump, the data is divided
into several parts each of which is analyzed independently. In the case shown above, the data is

sliced into three independent subpackets materialized by the red vertical lines.
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2.4 General data treatment scheme

Figure 2.12: General data correction scheme. Green: treatments specific to the bipartition ex-
periments. Blue: method used for the data treatment. The data treatment algorithm’s inputs are
the data (experimental images) and the mean atom number measured through absorption imaging.
This atom number can be overestimated for bipartition experiments (see Chap. 4) and must be
corrected for these experiments. The data is then sliced around signal jumps. Signal drifts are then
corrected before equations 2.63 are applied to correct for detection, data treatment and pixel to
pixel noises. The Delta method is then applied on the variance covariance matrices thus found to
eliminate the spurious contributions of the bipartition and atom number noises. The RF noise’s
contribution is then measured at time t = 0 by assuming that the variance of the magnetization at 0
interaction time should be equal to 3

2 AT (0). At later times the RF noise’s contribution to the total
magnetization is modified according to the remaining number of atoms, see sec. 2.2.6.
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3 Spin correlations from collective spin
fluctuations

Allez en avant, et la foi vous viendra
– Jean le Rond d’Alembert

In this chapter we show that the growth of all sorts of correlations in our system is enclosed
within the first and second - possibly mixed - moments of the Zeeman populations. By mea-
suring these various statistical moments, focusing in particular on the variance of the total
magnetization and the spin populations’ averages, we give a direct experimental proof of the
long time build up of spin correlations in our system. The method we propose circumvents
the use of customary state tomography techniques.

3.1 Definitions

In all of the following

� m̂i = |m〉i 〈m|i is the operator associated with the number of atoms in the spin state m
in site i , for typographic reasons, in some equations, we will also write m̂i = |mi 〉〈mi |.
When site i is doubly populated m̂i = (|m〉1 ⊗ 1+ 1⊗|m〉2) (〈m|1 ⊗ 1+ 1⊗〈m|2)

� Âm =∑
i m̂i is the non normalized number of atoms in the m Zeeman cloud

� am is the expectation value of the normalized number of atoms in the m Zeeman
cloud

� ai
m is the expectation value of the non normalized number of atoms in the m spin

state in the singlonic site i of the optical lattice ai
m = 〈m̂i 〉

� ai ,d
m is the expectation value of the non normalized number of atoms in the m spin

state in the doublonic site i of the optical lattice ai ,d
m = 〈m̂i 〉

� The C MS

m,m′ symbol represents the
〈

S, MS
∣∣3,m,3,m′〉 Clebsch-Gordan coefficient

� Nd is the number of populated doublonic sites in the lattice

� Ns is the number of populated singlonic sites in the lattice

� NS = Ns +Nd is the number of populated sites in the lattice

� AT = 2Nd +Ns is the number of atoms in the lattice
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3.2 From the elementary spin correlators to the magnetization cor-
relator and correlations lengths

3.2.1 Elementary correlators

In this first experiment we focus on the growth of global spin correlations.
For spin particles in a lattice, the following correlator is a most suited candidate to describe
these spin correlations

C m,m′ =
NS∑
i ̸= j

〈
m̂i m̂′

j

〉
−〈m̂i 〉

〈
m̂′

j

〉
(3.1)

The C m,m′
correlator, hereafter called elementary m,m’ correlator is simply the sum over

the whole lattice of individual non local (i ̸= j) correlators.
In this section we show that this kind of correlators can be estimated under certain
conditions (unit filling + homogeneity) simply by looking at the statistics of
the Zeeman populations .
To do so, let us first rewrite the elementary correlator as follows

C m,m′ =
NS∑
i ̸= j

〈
m̂i m̂′

j

〉
−〈m̂i 〉

〈
m̂′

j

〉
=

NS∑
i ̸= j

cov
(
m̂i ,m̂′

j

)
=

NS∑
i , j

cov
(
m̂i ,m̂′

j

)
−

NS∑
i
cov

(
m̂i ,m̂′

i

)
(3.2)

This quantity can be linked to the statistical properties of the populations in the following
manner:
The first term is straightforwardly estimated from the variance covariance matrix of the
Zeeman populations

cov (Am , Am′) = cov

(
NS∑
i

m̂i ,
NS∑

j
m̂′

i

)

=
NS∑
i , j

cov
(
m̂i ,m̂′

i

) (3.3)

The relationship between the on-site quantum correlations captured by the second term
and the Zeeman populations is less explicit and will require from us that we compute vari-
ous on-site expectation values, which we now do:

Expression of ai
m for singlons

Let the total many-body wavefunction be |Ψ〉 = ∑
αα |α〉 where |α〉 is a state spanning the

whole lattice of the form
∣∣∣mα

1 ...mα
i ...mα

NS

〉
, ma

i being a the spin projection of the singlon at
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site i (mi ∈ [|−3,3|]) and alpha is a complex number

ai
m = 〈m̂i 〉 =

∑
α

∑
β

α∗β〈α|mi 〉
〈

mi
∣∣β〉

=∑
α

∑
β

α∗β
〈

mα
1 ..mα

i ...mα
NS

∣∣∣mi

〉〈
mi

∣∣∣mβ
1 ..mβ

i ...mβ

NS

〉
=∑

α

∑
β

α∗βδm,mα
i
δ

m,mβ

i

〈
α

∣∣β〉
=∑

α

|α|2δm,mα
i

(3.4)

Expression of 〈M |m̂i
∣∣M ′〉 for doublons

In all of the following, we assume that doublons are restricted to the S=6 manifold which
is, because of local contact interactions, gap protected (for details see [49]). We therefore
write the |S, M〉 state as simply |M〉. This molecular state can be developed using Clebsch
Gordan coefficients in the atomic basis

|M〉 =∑
ma

C M
ma ,M−ma

|ma , M −ma〉 (3.5)

And therefore

〈M |m̂i
∣∣M ′〉= ∑

ma ,mb

C M
ma ,M−ma

C M ′
mb ,M ′−mb

〈ma , M −ma |
(
|m〉1 〈m|1 +|m〉2 〈m|2

)∣∣mb , M ′−mb
〉

= ∑
ma ,mb

C M
ma ,M−ma

C M ′
mb ,M ′−mb

[
(δm,maδm,mbδM−ma ,M ′−mb )+ (δma ,mbδm,M−maδm,M ′−mb )

]
= ∑

ma ,mb

C M
ma ,M−ma

C M ′
mb ,M ′−mb

δm,maδm,mbδM−ma ,M ′−mb )

+ ∑
ma ,mb

C M
ma ,M−ma

C M ′
mb ,M ′−mb

δm,M−maδm,M ′−mbδma ,mb

=C M
m,M−mC M ′

m,M ′−mδM ,M ′ +C M
M−m,mC M ′

M ′−m,mδM ,M ′

= 2
(
C M

m,M−m

)2
δM ,M ′

(3.6)

Hence denoting by
∣∣ψ〉 = ∑

αα |α〉 = ∑
αα

∣∣∣∣∣∣∣
singlons︷ ︸︸ ︷

mα
1 ,mα

2 , . . .mα
s ,

doublons︷ ︸︸ ︷
Mα

s+1, . . . , Mα
S

〉
the full state wave-

function of the whole many body system at hand, we obtain the following results

Expression of ai ,d
m for doublons

ai ,d
m = 〈m̂i 〉 =

∑
α

∑
β

α∗β
〈

mα
1 ,mα

2 , . . .mα
s , Mα

s+1, . . . Mα
i . . . , Mα

S

∣∣m̂i

∣∣∣mβ
1 ,mβ

2 , . . .mβ
s , Mβ

s+1, . . . Mβ

i . . . , Mβ

S

〉
3.6 →= 2

∑
α

∑
β

α∗β
(
C

Mα
i

m,Mα
i −m

)2
δα,β

= 2
∑
α

|α|2
(
C

Mα
i

m,Mα
i −m

)2

(3.7)
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Expression of
〈

m̂i m̂′
i

〉
for singlons〈

m̂i m̂′
i

〉=∑
α

∑
α′
α∗α′ 〈α|mi 〉

〈
mi

∣∣m′
i

〉〈
m′

i

∣∣α′〉
=∑

α

∑
α′
α∗α′ 〈mα

1 ..mα
i ...mα

N

∣∣mi
〉〈

mi
∣∣m′

i

〉〈
m′

i

∣∣∣mα′
1 ..mα′

i ...mα′
N

〉
=∑

α

∑
α′
α∗α′δm,m′

〈
mα

1 ..mα
i ...mα

N

∣∣mi
〉〈

m′
i

∣∣∣mα′
1 ..mα′

i ...mα′
N

〉
=∑

α

∑
α′
α∗α′δm,m′δm,mα

i
δm′,mα′

i

〈
α

∣∣α′〉
= δm,m′

∑
α

|α|2δm,mα
i

= δm,m′ai
m

(3.8)

Expression of 〈M |m̂i m̂′
i

∣∣M ′〉 for doublons

〈M |m̂i m̂′
i

∣∣M ′〉= ∑
ma ,mb

C M
ma ,M−ma

C M ′
mb ,M ′−mb

〈ma , M −ma |[
(|m〉1 〈m|1 +|m〉2 〈m|2)

(∣∣m′〉
1

〈
m′∣∣

1 +
∣∣m′〉

2

〈
m′∣∣

2

)]∣∣mb , M ′−mb
〉

= ∑
ma ,mb

C M
ma ,M−ma

C M ′
mb ,M ′−mb

〈ma , M −ma |
[(|m1〉

〈
m1

∣∣m′
1

〉〈
m′

1

∣∣+
|m1〉

〈
m1

∣∣m′
2

〉〈
m′

2

∣∣+|m2〉
〈

m2
∣∣m′

1

〉〈
m′

1

∣∣+|m2〉
〈

m2
∣∣m′

2

〉〈
m′

2

∣∣ ∣∣mb , M ′−mb
〉

= ∑
ma ,mb

C M
ma ,M−ma

C M ′
mb ,M ′−mb

[
(δm,maδm,mbδM−ma ,M ′−mbδm,m′)+ (δm,maδm,mb )×

(δm′,M−maδm′,M ′−mb )+ (δm′,maδm′,mb )(δm,M ′−mbδm,M−ma )+ (δm,M−maδm,M ′−mbδma ,mbδm,m′)
]

= ∑
ma ,mb

C M
ma ,M−ma

C M ′
mb ,M ′−mb

(δm,maδm,mbδM−ma ,M ′−mbδm,m′)

+ ∑
ma ,mb

C M
ma ,M−ma

C M ′
mb ,M ′−mb

(δm,maδm,mb )(δm′,M−maδm′,M ′−mb )

+ ∑
ma ,mb

C M
ma ,M−ma

C M ′
mb ,M ′−mb

(δm′,maδm′,mb )(δm,M ′−mbδm,M−ma )

+ ∑
ma ,mb

C M
ma ,M−ma

C M ′
mb ,M ′−mb

(δm,M−maδm′,M ′−mbδma ,mbδm,m′)

=C M
m,M−mC M ′

m,M ′−mδM ,M ′δm,m′ +C M
m,M−mC M ′

m,M ′−m(δm′,M−mδm′,M ′−m)

+C M
m′,M−m′C M ′

m′,M ′−m′(δm,M ′−m′δm,M−m′)+C M
M−m,mC M ′

M ′−m,mδM ,M ′δm,m′

= 2
(
C M

m,M−m

)2
δM ,M ′δm,m′ + (

C M
m,M−m

)2
δM ,m′+mδM ,M ′ +

(
C M

m′,M−m′
)2
δM ,m′+mδM ,M ′

= 2
(
C M

m,M−m

)2
δM ,M ′δm,m′ +

[(
C m′+m

m,m′

)2 +
(
C m′+m

m′,m

)2
]
δM ,M ′δM ,m′+m

= 2

[(
C M

m,M−m

)2
δM ,M ′δm,m′ +

(
C m′+m

m,m′

)2
δM ,M ′δM ,m′+m

]
(3.9)
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Expression of
〈

m̂i m̂′
i

〉
for doublons

〈
m̂i m̂′

i

〉=∑
α

∑
β

α∗β
〈

mα
1 ,mα

2 , . . .mα
s , Mα

s+1, . . . Mα
i . . . , Mα

S

∣∣m̂i m̂′
i

∣∣∣mβ
1 ,mβ

2 , . . .mβ
s , Mβ

s+1, . . . Mβ

i . . . , Mβ

S

〉
i

= 2
∑
α

∑
β

α∗β
[(

C
Mα

i

m,Mα
i −m

)2
δα,βδm,m′ +

(
C m′+m

m,m′

)2
δMα

i ,m′+mδα,β

]
= 2

∑
α

|α|2
(
C

Mα
i

m,Mα
i −m

)2
δm,m′ +2

(
C m′+m

m,m′

)2 ∑
α

|α|2δMα
i ,m′+m︸ ︷︷ ︸

Ξi ,d
m+m′

3.7 →= ai ,d
m δm,m′ +Ξi ,d

m+m′

(3.10)

Hence, we obtain the following expression for the second term of Eqs. 3.2

NS∑
i
cov

(
m̂i ,m̂′

i

)= Ns∑
i

(
δm,m′ai

m − (ai
m ai

m′)
)
+

Nd∑
i

(
δm,m′ai ,d

m − (ai ,d
m ai ,d

m′ )+Ξi ,d
m+m′

)
=

Ns∑
i

(
ai

m(δm,m′ −ai
m′)

)
+

Nd∑
i

(
ai ,d

m (δm,m′ −ai ,d
m )+Ξi ,d

m+m′

) (3.11)

And all in all we obtain the following expression for the elementary m,m’ correlator

C m,m′ =
Ns∑

i ̸= j

〈
m̂i m̂′

i

〉−〈m̂i 〉
〈

m̂′
i

〉= cov(Am , Am′)−
Ns∑
i

(
ai

m(δm,m′ −ai
m′)

)
−

Nd∑
i

(
ai ,d

m (δm,m′ −ai ,d
m )+Ξi ,d

m+m′

)
(3.12)

The distinction between ad
m and am is necessary as, a priori, doublons undergo dynamical

processes which are different from those of singlons. In particular the dipolar dynamics
undergone by doublons are faster.
In any case, the sum terms involving the precise knowledge of the number and states of
doublons or singlons at time t are not experimentally accessible. This limitation of course is
not specific to our experiment and is not of huge concern anyway as we are mostly interested
in the long time build up of the quantum correlations, moreover the number of doublons
decreasing with time means that the contribution of these terms to the C m,m′

correlator
quickly becomes negligible. In practice, in our setup, doublons are completely dropped
within the first 10 ms, at which point the correlator can be written

C m,m′
t>10ms =

N∑
i ̸= j

〈
m̂i m̂′

i

〉−〈m̂i 〉
〈

m̂′
i

〉= cov (Am , Am′)−
Ns∑
i

ai
m(δm,m′ −ai

m′) (3.13)

This expression can be linked to the following fictitious product state |Ψ〉 built on the
single particle wave function whose average spin populations are given by the Zeeman
populations:

|Ψ〉 = ∣∣1 :ψ
〉

. . .
∣∣NS :ψ

〉
(3.14)

Where

�

∣∣i :ψ
〉=∑

m

√
ai

m |m〉
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For this state

〈Âm Âm′〉Ψ = ∑
i ̸=i ′

〈
i :ψ

∣∣mi
〉〈

mi
∣∣i :ψ

〉〈
i ′ :ψ

∣∣m′
i ′
〉〈

m′
i ′
∣∣i ′ :ψ

〉+ ∑
i ′=i

〈
i :ψ

∣∣mi
〉〈

m′
i

∣∣i :ψ
〉

= ∑
i ̸=i ′

ai
m ai ′

m′ +
∑

i
ai

mδm,m′
(3.15)

Similarly, we get

〈Âm〉Ψ =∑
i

ai
m (3.16)

Using these equations we define covpr od as

covpr od
(

Âm , Âm′
)= cov

(
Âm , Âm′

)
Ψ = ∑

i ̸=i ′
ai

m ai ′
m′ +

∑
i ′=i

ai
mδm,m′ −∑

i
ai

m

∑
j

a j
m′

=∑
i

ai
m(δm,m′ −ai

m′)
(3.17)

And

C m,m′
t>10ms = cov

(
Âm , Âm′

)−covpr od (Âm , Âm′) (3.18)

This equation shows that covariances assuming values different than those associated
with the product state |Ψ〉 is a proof of correlations developing in the sample.

Assuming homogeneity i.e.
∣∣i :ψ

〉 = ∑
m

√
Am
Ns

|m〉 = ∑
m
p

am |m〉, the covpr od (Âm , Âm′) term

becomes entirely deducible from the global spin populations averages (because ai
m is then

equal to Am
Ns

), and in turn, the elementary correlator C m,m′
t>10ms becomes entirely deducible

from the statistics of the populations, as was announced in the beginning of this section

Side note: If we do not assume homogeneity, we can still reorder the labeling of the sites
so that, a1

m ≤ . . . ≤ aNS
m . Using the Chebyshev’s sum inequality [69], we get

1

NS

NS∑
i

ai
m ai

m ≥
(

1

NS

NS∑
ai

m

)2

= a2
m

⇔− 1

NS

NS∑
ai

m ai
m ≤−a2

m

⇔ 1

NS

NS∑
ai

m − 1

NS

NS∑
ai

m ai
m ≤ am −a2

m

⇔ covpr od
(

Âm , Âm
)≤ NS(am −a2

m)

⇔ cov
(

Âm , Âm
)−covpr od

(
Âm , Âm

)≥ cov
(

Âm , Âm
)−NS(am −a2

m)

(3.19)

So that the statistical properties of the populations provide lower bounds for the diagonal
correlators:

C m,m
t>10ms ≥ cov

(
Âm , Âm

)−NS(am −a2
m) (3.20)



81

3.2.2 Magnetization correlator

Other relevant correlations can be obtained using these elementary correlators as building
blocks, for example local magnetization correlations.
A measure of the local magnetizations correlations is given by the so called magnetization
correlator, Cz , which takes into account all the pairwise connected correlations associated
with magnetization in our system:

Cz =
N∑

i ̸= j

〈
ŝi

z ŝ j
z

〉
−

〈
ŝi

z

〉〈
ŝ j

z

〉
(3.21)

where ŝi
z = ∑

m mm̂i is operator associated with the local magnetization of the particle in
the i th site of the lattice. Yet again, depending on the filling of lattice site i , the ŝi

z operator
applies either to a single atom or a pair of atom.
This correlator is also given by the elementary correlators:

Cz =
∑

m,m′
mm′C m,m′ = ∑

m,m′
mm′ N∑

i ̸= j

〈
m̂i m̂′

j

〉
−〈m̂i 〉

〈
m̂′

j

〉
=

N∑
i ̸= j

〈 ∑
m,m′

mm′m̂i m̂′
j

〉
−

〈∑
m

mm̂i

〉〈∑
m′

m′m̂′
j

〉

=
N∑

i ̸= j

〈
ŝi

z ŝ j
z

〉
−

〈
ŝi

z

〉〈
ŝ j

z

〉
(3.22)

In particular, using 3.18, we find

C t>10ms
z = ∑

m,m′
mm′C m,m′

t>10ms =
∑

m,m′
mm′cov (Am , Am′)−

∑
m,m′

mm′ covpr od (Am , Am′)

= ∑
m,m′

mm′cov (Am , Am′)−
∑

m,m′
mm′∑

i
ai

m(δm,m′ −ai
m′)

= ∑
m,m′

mm′cov (Am , Am′)︸ ︷︷ ︸
∆2Ŝz

+∑
i

(∑
m

mai
m

)2

−∑
i

∑
m

m2ai
m

homogeneity→=VarŜz +NS

(∑
m

mam

)2

−NS
∑
m

m2am︸ ︷︷ ︸
−Σz≡ on-site spin fluctuations

(3.23)

Which is the correlator used in our article [66].
Σz represents the on site site fluctuations of the local magnetization Σz =∑

i Var
(
ŝi

z

)
.

In this chapter we have shown that the information encoded in this correlator and others
is entirely found in the elementary correlator C m,m′

t>10ms , which is readily obtained from the
populations statistics.
While the link between the elementary correlators and the magnetization correlator is of
theoretical interest, experimental results focus on the latter C t>10ms

z as there is no obvious
way to correct the individual population covariances cov(Am , Am′) for the RF noise as was
explained in Chap. 2 for interaction times tdyn > 0 ms whereas it is possible to do it for the
variance of the magnetization.

Final notes:
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� The method we propose here requires that populations be measured in a single basis
only.

� The method requires that homogeneity be assumed to retrieve quantum correlations.
This condition is in fact not too stringent as our experimental results are not signif-
icantly affected by typical experimental gradients as suggested by numerical simula-
tions, see sec. 3.3.5

3.3 Results

3.3.1 Experimental protocol

In order to estimate the magnetization correlator,Cz , discussed above as a function of time,
the results of the dipolar dynamics must be measured a great many number of times. The
results presented in this chapter are based on the analysis of 5× 40 shots per point (i.e. per
interaction time - ∆t in the figure below -). The limited size of the subpackets speaks of
the necessity to regularly check and compensate for any experimental drift.
Typical experiments start out with a condensate (N ∼ 104), which we load into a 3D
anisotropic lattice (see Chap. 1). Particular care is taken calibrating the lattices, the
depth of which is measured using 2 µs diffraction sequences and subsequently monitored
using dedicated photodiodes1. We made sure that the depth of the lattices was always
above 20 Er ,532, typically 22 Er ,532 for the horizontal lattices and 28 Er ,532 for the vertical
one, such lattice depths ensure that all tunneling related processes are suppressed, their
constancy across the various experimental series guarantees on the other hand that the so
called quadratic Zeeman fields generated by lattice induced tensorial light shifts [15] are
constant.
The atoms always spend the same time in the optical lattice independent of the actual
duration of the dynamics which is determined by the triggering RF pulse. This helps limit
systematic heating or tunneling related biases. Once the chosen dynamic time has elapsed,
the atoms are slowly released (in 300 µs) from the hold of the lattice, at the same time
the dipolar laser (1075 nm) is abruptly switched off and on again. This technique, termed
δ-kick cooling [70], reduces the velocity dispersion of the atoms and makes for smaller and
better fitted clouds. The atoms are then imaged after a ≈ 14 ms time of flight using a 1
ms off-resonant pulse to make them fluoresce. Each experimental shot provides us with
seven spin populations for the chosen interaction time tdyn, the compilation of which lets
us estimate the spin population variance covariance matrix of the populations for this spe-
cific interaction time, and more importantly in the case at hand the variance of the global
magnetization and the average fractional populations.
All of these experiment are carried in the dark for better performances of the fluorescence
imaging as was explained in Chap. 1.

1While the photodiode signal informs us on the power of the light actually hitting the atoms, it may
well happen that the spectral purity of the 532 nm laser worsens with time, which can not be detected by
the photodiodes. The spectral coherence of the lattice lasers should therefore be frequently checked using
diffraction, and improved using the ETALON CAPTURE feature of the Verdi system.
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Figure 3.1: Schematic power ramps for the various laser involved in the experiments described in
the present chapter.

3.3.2 Data treatment protocol

The information enclosed in the data is retrieved by fitting the clouds’ intensity profiles
with 1D Gaussian functions. These fits provide us with the clouds’ total signals and the
related standard errors.
To analyze the data we use the scheme referenced at the end of Chap. 2. First, total
signal drifts are corrected for as they can fictitiously increase the variances of the various
quantities that are measured (the Ams ). Next, we compute the detectivity factors (the so
called αs of Eq; 2.63 for example) using the data points at time tdyn = 0 ms so that the
average fractional populations are symmetric at all times and equal to those theoretically
predicted for a π

2 pulse. At this point the Eqs. 2.63 are applied to get rid of the noises
linked to the detection chain. To get rid of the number noise we then use the Delta scheme
presented in Eqs. 2.2.6 on the non normalized variance covariance matrices obtained at the
previous step.
We then compute the variance of the magnetization -Var

(
Ŝz

)
- as well as the corresponding

onsite fluctuations Σz . We finally compute the contribution of the RF noise (∆t=0
RF ) for each

data point at time tdyn = 0 ms by forcing the normalized variance of the global system
Var(Ŝz )

AT (0) to 3/2. In other words we have ∆t=0
RF = Var(Ŝz )

AT (0) −3/2. This value is used to correct the
variances at greater interaction times by an amount that is proportional to the remaining
number of atoms ∆t>0

RF =∆t=0
RF

AT (t )
AT (0) .

Orders of magnitude for the various noises are similar to those found in [66]2. For the
reader to get an idea of the different orders of magnitude, we report this articles’ numbers

here: the RF noise’s contribution is approximately 0.7×
√

3
2AT

(where
√

3
2AT

is the expected

variance of the normalized magnetization at time tdyn = 0 ms). The initial data treatment

and pixel to pixel noise contribution is similar 0.6×
√

3
2AT

and the contribution of the detec-

tion chain related noises is about 0.6×
√

3
2AT

initially. Using the corrected variances and on

site fluctuations we compute the time evolution of the magnetization correlator Cz . This
time evolution is presented below.

2In this article a different data treatment approach was chosen: the normalization process was carried
first, then the detection noises were removed in quadrature.
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3.3.3 Results

Figure 3.2: Green: Normalized magnetization correlator Cz /AT time evolution. Black transparent
points: Normalized magnetization correlator Cz /AT time evolution using the methods developed
in [66], these methods subtract in quadrature the various noises presented in the previous chapter
to the normalized intensity count populations. Orange: time evolution of the normalized on site
fluctuations Σz /AT . Blue: time evolution of the magnetization’s variance Var

(
Ŝz

)
. Purple: time

evolution of the number of atoms at time tdyn divided by the number of atoms at time tdyn = 0. Red:
Numerical time evolution of Cz /AT , these GDTWA numerical simulations made by our collaborators
Sean Muleady, Bihui Zu and Ana Maria Rey do not take losses into account. Black/Dashed: Long
time expectation value of Cz /AT found through high temperature expansions [66]. Red shaded area:
”short time”domain, the discussions of the previous sections are valid beyond t=10 ms. The growth
of the Cz correlator testifies to the build up of correlations between particles in the lattice. The
rather good agreement with theoretical predictions shows that dissipative phenomena do not impair
the development of these correlations, as is also supported by the simulations reported in App. D.
The agreement with theory also hints at the quantum nature of these correlations while at the same
time validating the approach of Chap. 2. The relatively good agreement of the experimental points
found through the methods developed in Chap. 2 and those found using the scheme of our article

[66] confirms the validity of the methods used in this article.

A more proper monitoring of the quantum correlations’ growth as caused by the sole dipole
dipole interactions would require doublons to be removed before the beginning of the dy-
namics. This can be achieved making use of dipolar relaxation [15]. Filtering out dou-
blons requires a preliminary π RF pulse, which transfers all the atom in the coherent state
|ms =+3〉. In this configuration, doublons undergoing dipolar relaxation leave the lattice.
On the other hand singlons remain in the |ms =+3〉 state. After 10 ms doublons have mostly
left the lattice, at this point a π

2 pulse can trigger the quench dynamics. This scheme how-
ever increases the preparation noise when compared to a single π

2 pulse and ultimately
produces data of lesser quality.
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3.3.4 Estimation of quantum correlation lengths

The measured correlators may be used to estimate various kinds of correlation lengths. To
do so, one must first specify the distance dependence of the relevant correlation functions.
Let us take the example of the following cz

(
i , j

)
cz (i , j ) =

〈
ŝi

z ŝ j
z

〉
−

〈
ŝi

z

〉〈
ŝ j

z

〉
(3.24)

For a thermalized spin system we can in general expect this correlator to be exponentially
decaying with the distance between sites [71], with a decay rate given by the correlation
length ξ.
If we additionally neglect the anisotropy of the dipolar interactions and that of the lattice
configuration (single correlation length) and assume that the system is translationally in-
variant
(cz (i , j ) −→ cz (ri j )) , then we can posit the following functional form for cz (r )

cz (r > 0) ≈−cz (0)e−r /ξ (3.25)

Where the − sign is motivated by the fact that Cz is negative.
Here, the cz (0) constant corresponds to zero range correlations, it should therefore coincide
with the on-site fluctuations given by Σz

N quantity. Hence by summing over all particles in
the lattice, we end up with (i0 is fixed)

Cz

N
= ∑

j ̸=i
cz (ri0 j ) =−cz (0)

∑
r>0

e−r /ξ

⇔ Cz

N
=−Σz

N

∑
r>0

e−r /ξ

⇔−Cz

Σz
= ∑

r>0
e−rξ

(3.26)

This integral equation can be solved numerically: in our case, at long times (t = 100 ms),
we measure Cz /N ≈−1.37 and Σz /N ≈ 3.24. Using the true lattice geometry and solving for
ξ, we obtain the value

ξ= 0.39
λ532

2

instead of 0.3 for the cubic lattice assumed in [66] which means that, in the extent in which
the hypotheses we made hold true, local magnetization correlations in our system mainly
involve neighboring entities.

This kind of reasoning can be extended to population correlations by focusing on the local
population correlator cm,m′

(i , j )

cm,m′
(i , j ) =

〈
m̂i m̂′

j

〉
−〈m̂i 〉

〈
m̂′

j

〉
(3.27)

Assuming in the same way isotropy, translational invariance and exponential decay we get

cm,m′
(i , j ) = ϵcm,m′

(0)e−ri j /ξm,m′ (3.28)

Where

� ϵ=±1 accounts for the sign of the correlation function
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� cm,m′
(0) = covpr od (Am , Am′) accounts for on site fluctuations which as proven above

are given by the product variance covariance matrix

Using Eq. 3.18 we get another integral relation (i0 is fixed)

Ns∑
j ̸=i0

cm,m′
(i0, j ) = ϵcm,m′

(0)
Ns∑

j ̸=i0

e−ri0 j /ξm,m′ = 1

N

(
cov

(
Âm , Âm′

)−covpr od (Âm , Âm′)
)

⇔ ϵ
Ns∑

j ̸=i0

e−ri0 j /ξm,m′ = 1

N

(
cov

(
Âm , Âm′

)
covpr od (Âm , Âm′)

−1

) (3.29)

3.3.5 Effect of inhomogeneities

The effect of magnetic inhomogeneities was numerically investigated, it was confirmed by
collaborators through GTWDA simulations (∼ 70 atoms) that their effect on the measured
correlators was small, that is that the difference between the real inhomogeneous system
and the perfect (without gradients) spin system remains small as far as the Cz correlator is
concerned, see Fig. 3.3.
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Figure 3.3: The effect of inhomogeneities on the development of correlations is negligible. Solid
lines correspond to a homogeneous system, circles assume inhomogeneities comparable to those
that were experimentally measured. It is intriguing that the correlations which might classically
speaking be seen as a measurement of the relative orientation of the spins are negligibly affected by
the gradients given that the differential rotation between neighboring entities (∆ωLar mor ≃ 8 Hz) in
our lattice - induced by these gradients - is not negligible on the time scale of the experiment (100
ms). This result can be understood by realizing that the evolution of the Cz correlator is driven
by the values of the fractional populations (the variance remains mostly constant throughout the
dynamics) and that magnetic gradients do not affect much the evolution of these populations on the
time scale of the experiment carried here, a fact which was observed experimentally before [72] and

checked numerically on large atomic samples.
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4 Spin correlations from bipartite
measurements

Les idiots. Ils ne savent pas à quel point la moitié est plus que le tout, et ils ne
savent pas non plus à quel point il y a dans la mauve et l’asphodèle un immense
avantage.

– Hesiod (Les travaux et les jours)

The range of the dipole dipole interactions between chromium atoms is such that it is reason-
able to believe that the spin correlations observed in our system involve neighboring entities
mainly, be they singlons or doublons. This proposition is in some sense supported by the
spin correlation length found in the previous chapter ξ= 0.39λ/2. The experiment presented
in Chap. 3 was not designed to take this specificity into account. In this chapter we present
a novel bipartition method based on position to momentum mapping techniques which can
be used to probe, more finely, the correlations between these neighboring entities. We show
that, in our system, there develops correlations of more intricate nature than can be, a
priori, surmised from the negative value of Cz .

4.1 A practical example

To illustrate the possible usefulness of bipartite measurements, let us consider the following
hypothetical state

|Ψ〉 = |1A : +3,1B : −3...NA : +3, NB : −3〉+ |1A : −3,1B : +3...NA : −3, NB : +3〉p
2

Figure 4.1: Representation of state |Ψ〉

|Ψ〉 describes a spin ensemble prepared in an antiferromagnetic state. Let us consider the
global spin correlation function Cz introduced in the previous chapter and rewrite it so as
to take into account the bipartite nature of this state
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ŝ j A

z

〉)
+ ∑

i A , jB

(〈
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z ŝ j A
z

〉
−

〈
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ŝiB

z ŝ jB
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ŝi A

z

〉〈
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z ŝ jB
z

〉
−

〈
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(4.1)

The first two terms relate to the growth of correlations within a single spin family, while the
second term relates to interfamilly spin correlations. For the |Ψ〉 state we are considering
(assuming NA = NB)

C A
z = 1

2

∑
i A ̸= j A

(3× (3)+ (−3)× (−3))−0×0 = 9NA(NA −1)

C B
z = 1

2

∑
iB ̸= jB

(−3× (−3)+ (3)× (3))−0×0 = 9NB (NB −1)

C AB
z = 1

2

∑
i A , jB

(3× (−3)+ (−3)×3)−0×0 =−9NA NB

Cz = 9(N 2
A +N 2

B −2NA NB )−9(NA +NB ) = 9((NA −NB )2 − (NA +NB )) ≃−9N

(4.2)

Total measurements such as those performed in Chap. 3 can not resolve the particular
nature of this state’s spin spin correlations which is better deciphered by the partial mea-
surements made possible by the bipartition process. Notice in particular that intra and
inter family correlations are of opposite signs, and that

∣∣C AB
z

∣∣, ∣∣C A/B
z

∣∣≫|Cz |
As it turns out, our system is also susceptible of developing such short scale textured spin
spin correlations see Fig. 4.2.
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Figure 4.2: The bipartition technique we used fits the sign of the DDI next neighbor couplings of
our system. As can be seen from the horizontal potential which is reproduced here when the 1064
nm laser is switched on, the A and B families’ intra and extra next neighbors couplings which are

proportional to d 2

r 3
i j

(
1−3cos

(
θi j

)2
)
are of opposite signs : the next neighbors couplings internal to

each family are +16 Hz (along ez) and 1.04 Hz (along e⊥), while the external ones are −21.5 Hz. In
a system where Ising type interactions prevail, such couplings would probably result in some kind
of alternate spin ordering as far as thermodynamics are concerned. More generally, the anisotropy
of the dipole dipole interactions and the anisotropy of the lattice also suggest that intra-family and

inter-family correlations of different nature should emerge.

To better track these bipartite correlations i.e. the correlations between the A and B family,
we focus on the C AB

z correlator:
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z =Cz −C A
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Where
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Ŝz

)−ΣZ (see Chap. 3)
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(4.4)

The same kind of decomposition is available for the elementary correlators C m,m′
t>10ms .

4.2 The bipartition process

4.2.1 Physical principles of bipartition

The bipartition technique that has been implemented draws on known position to momenta
mapping methods which we have adapted to our system. These techniques build on the
equivalence between the momentum and the position of a particle trapped in a harmonic
potential.
In the following we take a brief look at the mathematical fundaments of these techniques.
For a more detailed derivation see [73], [74], for an alternative one see [75].
A single particle in a 1D harmonic trap can be described by its quasi probability distribution
as given by the Wigner function , which is defined as

W (x, p, t ) =
∫ ∞

−∞
dϵ

e iϵp/ħ

2πħ Ψ∗ (x +ϵ/2, t )Ψ(x −ϵ/2, t ) (4.5)

Where

� Ψ is the corresponding single body wavefunction

The momentum distribution Wp of the particle can be found integrating its Wigner function
over x. The evolution equation for the Wigner function derives from the time dependent
equation1

iħ∂Ψ
∂t

=− ħ2

2m

∂2Ψ

∂x2 +V (x)Ψ (4.6)

1Barring any kind of particle interaction, which justifies the single body aspect of this derivation.
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In the case of a harmonic potential V (x) = 1
2 mω2x2, assuming W (x, p, t ) =W ( f (x, p, t ), g (x, p, t ))

we find

∂W

∂ f

[
∂ f

∂t
+ p

m

∂ f

∂x
−mω2x

∂ f

∂p

]
= 0

∂W

∂g

[
∂g

∂t
+ p

m

∂g

∂x
−mω2x

∂g

∂p

]
= 0

(4.7)

Which leads to

f (x, p, t ) = x cos(ωt )− p

mω
sin(ωt )

g (x, p, t ) = mωx sin(ωt )+p cos(ωt )
(4.8)

Denoting T is the oscillation period of the harmonic trap, we obtain

W

(
x, p,

T

4

)
=W

(
− p

mω
,mωx, t = 0

)
(4.9)

As mentioned before, the momentum distribution Wp is found integrating over x

Wp

(
p,

T

4

)
= 1

mω
Wx

(
x =− p

mω
, t = 0

)
(4.10)

We see that the normalized momentum distribution at time T
4 is equal to the normalized

position distribution at time t = 0 with a scaling factor − 1
mω (see Fig.4.3).

Figure 4.3: Comparison of the momentum and position distributions of two non interacting par-
ticles in a harmonic trap. After a quarter period, the momentum and position distributions of
particles in a harmonic trap are exchanged, the magnification factor depends on the frequency of

the trap.

This process can be understood looking at the equation of motion of classical particle in a
harmonic trap.

x(t ) = x0 cos(ωt +φ) (4.11)
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from which we see, by differentiation, that the momentum and position of the particle
evolve in quadrature.

4.2.2 The bipartition in practice : Laser sequence

The experimental protocol for bipartite experiments is similar to the one described in the
previous chapter, the only difference resides in the release step.

Figure 4.4: Compared to the experiments described in Chap.3, the 1064 nm is ramped up in
0.5 ms at the end of the dynamics. H2 and V are then switched off in 300 µs at which point the
bipartition is performed: H1 is switched off abruptly using the RF switch of the AOM which controls
the injection of the laser into its dedicated fiber. T1064

4 = 10 µs later approximately, depending on its
power, the 1064 nm laser is also switched off. Atoms are then observed using fluorescence imaging
as described in Chap. 1. The δ-kick step, which is not represented here, is much less efficient than
it is for other experiments and is usually performed using the horizontal dipolar trap only, as the

vertical one prevents the atoms from expanding and separating along the bipartition axis.
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Below a pictorial perspective of the laser sequence

Figure 4.5: The total dipole potential (Orange) is the incoherent sum of the two potentials created
by each of the two 1064 and 532 nm lasers. In the first step of the bipartition, the atoms sit in the
potential wells created by the 532 nm laser. In the second step, the infrared potential enters the
fray, the atoms are then transferred to a series of double wells. In the third step the 532 nm laser
is abruptly switched off, the A and B labeled atoms are then driven by the harmonic-like potential
of the 1064 nm laser. After a quarter period (10 µs) of this harmonic-like potential has elapsed
the infrared laser is also switched off abruptly, this timing is such that the initial positions of the
atoms are mapped into their respective momenta. All in all, after time of flight we end up with two

distinct ensembles of atoms corresponding to each of the two families.
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When coupled to the Stern & Gerlach technique, we can decouple the seven Zeeman states
of chromium and access the full bipartite statistics of our system

Figure 4.6: Above two photos taken after an interaction time of 0 and 15 ms respectively following
a π

2 pulse. The Stern Gerlach technique is compatible with the bipartition technique we employ.

4.2.3 Bipartition pitfalls

The bipartition noise
The intensity patterns created by the 532 nm laser and the 1064 nm laser can drift relative
to each other, this is, among other reasons2, because these lasers are not frequency locked,
as such, at the position of the BEC, the bichromatic intensity landscape (in orange below)
varies with each experimental realization. This shot-to-shot variability of the bichromatic
dipole potential is what we call the bipartition noise.

2Differential mechanical vibrations, temperature, pressure conditions... on the path of the 1064 nm and
532 nm beam can all contribute to this drift
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Figure 4.7: The 532 nm laser and the 1064 nm laser are not frequency locked, therefore the intensity
pattern they create varies from shot to shot. The panel on the right (Φ2) shows an intensity pattern
for which the two atomic families are well separated. The configuration on the left leads to three
atomic clouds: the atoms in the A family can either travel to the left or the right direction, whereas

the B family atoms stay put.

The control and the stability of this pattern are paramount to the success of the bipartite
measurement, fortunately this pattern proved to be quite stable through time, more so than
erratic fluctuations, it was shown to slowly evolve in a pseudo-periodic fashion (T ≃ 330s)
despite both reflected beams being decoupled.
The evolution of this intensity pattern was such that it became possible to stabilize it
by hand using a 200 MHz double pass acousto-optic modulator: by fine tuning the 1064
nm beam’s frequency (or equivalently its wavelength), and given the 50 cm distance that
separates the retroreflection mirror (see Chap. 1) from the BEC, one can effectively shift
the nodes and antinodes of the 1064 nm lattice and in final analysis control the intensity
pattern under consideration. From the statistical analysis point of view, the bipartition
noise can be dealt with using normalization (i.e. the Delta method) or partial covariances.
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Figure 4.8: Early days bipartition photo gallery for a freely evolving phase or more precisely a
freely evolving intensity landscape at the level of the atoms. These pictures were taken in less than
ten minutes. We see that the 1064/532 intensity pattern evolves in an almost periodic fashion.
At phase Φ1 (see Fig.4.7), three clouds are apparent. At phase Φ2, the bipartition produces two

connected clouds.

The photo gallery above tells of an omnipresent subsidiary family ABis, wherein atoms can
end up being projected. This particular defect is highlighted when considering average im-
ages of the bipartition, see the Fig.4.9 below. This defect must be taken into account when
treating the data, as it may lead to an overestimation of the number of atoms contributing
to the fluorescence signal.
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Figure 4.9: Right: average over 40 pictures at time tdyn = 30 ms. Left: single shot at time tdyn = 30
ms. The imperfections of the bipartition are highlighted by the averaging. A substantial part of the
atoms (evaluated to 14%) is not taken into account when fitting the data. The number of atoms
measured using absorption imaging is corrected by this factor of 14% when analyzing the data.

Effects of anharmonicity
The premise according to which momentum and position distributions are switched at T

4 is
only valid for a harmonic oscillator. For a sinusoidal potential, the equation of motion of a
classical particle read

Ẍ =−A′ sin(k X ) for− π

2k
< X < π

2k
(4.12)

This can be rewritten as
ẍ =−A sin(x) for− π

2
< x < π

2
(4.13)

Where A = A′k. Multiplying this equation by the particle’s velocity ẋ, we find that

1

2
ẋ2 = A cos(x)+B

ẋ(0) = 0 −→= A (cos(x)−cos(x0))
(4.14)

In particular, we have

d t = d xp
2A (cos x −cos x0)

=⇒ T = 4p
2A

∫ x0

0

d xp
cos x −cos x0

= 4p
2A

F
(π

2
,sin

( x0

2

)) (4.15)

Where F is the incomplete elliptic integral of first kind

F (ρ,k) =
∫ ρ

0

du√
1−k2 sin2 u



98

Figure 4.10: Plot of the incomplete elliptic integral of first kind for an initial position x ∈ [|0, π2 |].
The period of the particles’ oscillation within a sinusoidal trap depend on their initial position. The
period differences induced by this function are small, as the particles are initially extremely well
localized within the 1064 well: if we neglect the non zero extension of the particles Wannier function

all particles in the A (resp. B) wells share the same initial position x0 modulo the lattice step.

This is to say that there is no global T
4 time per-se for all particles in the lattice, and the final

position to momentum mapping is more complicated, in particular there are now two scaling
factors instead of one, which induces additional asymmetries between the A and B families’
clouds. These two scaling factors collapse back into a single one in the favorable symmetric
intensity pattern case Φ2 shown in Fig. 4.7: two initially symmetrically positioned particles
will still end up acquiring perfectly antisymmetric momenta, despite the anharmonicity of
the well.

Effect of exchange contact interaction during the release step
The timescales of inelastic interactions were computed in Chap. 2. It takes a few hundred
microseconds for two particles trapped in a 532 nm well to undergo a spin changing collision.
The release step only lasts 10 µs. It is therefore unlikely that contact interactions occur
during the bipartition process (i.e. during the release step where particles share the same
lattice site and are traveling towards each other) and end up affecting its outcome.

Tunneling effects during the ramp up of the 1064 nm laser
During the ramp up of the 1064 nm laser, restricting this theoretical venture to the sym-
metric intensity
pattern which corresponds to the data that was taken and neglecting interactions, tunneling
processes can be modeled - crudely - by the following tight binding Hamiltonian

Ĥ =
N−1∑

n, j=0
En â†

j ,n â j ,n −
[

N−1∑
j=0

J+â†
j ,B â j ,A + J−â†

j−1,B â j ,A +h.c

]
(4.16)

Where

� n ∈ {A,B}

� N is the number of lattice cells (each cell contain two sites)
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� J+ and J− are effective tunneling parameters (see Fig.4.11)

� â†
n, j (ân, j ) are the creation (annihilation) operator of a particle in site n of lattice cell

j

Figure 4.11: Intensity pattern’s evolution when the 1064 nm laser is ramped up, η is the depth
ratio of the 532 nm and 1064 nm lattices. The blue horizontal bars represent the energy levels of the
wells in the harmonic approximation. The pattern - as far as the phase is concerned - corresponds to
the one used for the experimental data that was taken. When ramping up the 1064 nm laser (η 0↗1)
the ∆1 potential barrier increases, whereas the ∆2 potential barrier decreases. Tunneling process
depend not only on the height of these barriers but also - within the isolated well approximation -
on the energy discrepancy between the harmonic levels of each site. In the process described above
all these harmonic levels are and remain degenerate. The evolution of the tunneling parameters J+
and J− will therefore only depend on the evolution of the barriers’ heights. In the process described

by the image above, we expect J+ to decrease, and J− to increase.

To estimate the typical number of atom tunneling out of the initially populated site A
during the ramp up phase, let us introduce the Fourier transform of the â operators:

b̂n(q) = 1p
N

∑
j

e i q j d ân, j ↔ ân, j = 1p
N

∑
q∈B Z

e−i q j d b̂n(q) (4.17)

Where

� d is the lattice step

In particular, by symmetry of the Brillouin zone, we have the following relations

N−1∑
j=0

â†
j ,n â j ,n = 1

N

∑
q ,q ′∈B Z

N−1∑
j=0

e i (q−q ′) j d b̂†
n(q)b̂n(q ′) = ∑

q∈B Z
b̂†

n(q)b̂n(q)

N−1∑
j=0

â†
j ,B â j ,A = 1

N

∑
q ,q ′∈B Z

N−1∑
j=0

e i (q−q ′) j d b̂†
B (q)b̂A(q ′) = ∑

q∈B Z
b̂†

B (q)b̂A(q)

N−1∑
j=0

â†
j−1,B â j ,A = e−i qd

N

∑
q ,q ′∈B Z

N−1∑
j=0

e i (q−q ′) j d b̂†
B (q)b̂A(q ′) = ∑

q∈B Z
e−i qd b̂†

B (q)b̂A(q)

(4.18)
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Using equation 4.17, Ĥ can be rewritten :

Ĥ =
N−1∑

n, j=0
En â†

j ,n â j ,n −
N−1∑
j=0

(
J+â†

j ,B â j ,A + J−â†
j−1,B â j ,A +h.c

)
= ∑

q∈B Z
En b̂†

n,q b̂n(q)−
(

J+
∑

q∈B Z
b̂†

B (q)b̂A(q)+ J−
∑

q∈B Z
e−i qd b̂†

B (q)b̂A(q)+h.c

)
= ∑

q∈B Z

[
En b̂†

n(q)b̂n(q)− J+b̂†
B (q)b̂A(q)+ J−e−i qd b̂†

B (q)b̂A(q)+h.c
]

= ∑
q∈B Z

(
b̂†

A(q)b̂†
B (q)

)
h(q)

(
b̂A(q)
b̂B (q)

)
(4.19)

Where

h(q) =
(

E A T (q)
T (q)∗ EB

)
with

T (q) =−(J++ J−e+i qd ) (4.20)

and E A/B the energies defined by the tight binding Hamiltonian 4.16. Diagonalizing this
Hamiltonian we end up with the following band structure:

ϵ±(q) = E ±
√

E 2
∆+

∣∣T (q)
∣∣2

(4.21)

Where :

E = E A +EB

2
and E∆ = E A −EB

2
(4.22)

The band gap is given by ∆(q) = ϵ+(q)−ϵ−(q) = 2
√

E 2
∆+

∣∣T (q)
∣∣2
, so that:

∣∣T (q)
∣∣2 = (J+)2 + (J−)2 +2J+ J−cos(qd) = ∆(q)2 −4E 2

∆

4
(4.23)

Assimilating this band gap to the one between the two lowest bands of the lattice Hamil-
tonian
structure and fitting the

∆(q)2−4E 2
∆

4 function to the band gap thus found, we can derive both
tunneling parameters J+ and J−. Put otherwise, we choose J+ and J− such that the 4.16
model reproduces the lattice’s band structure.
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Figure 4.12: Evolution of the
(

J+, J−
)
parameters as a function of time when the 1064 nm laser is

ramped up (η= 0 → η= 1) in 500 µs.

Assuming the number of atoms tunneling from site A to the B sites is:

NA =
∫ Tr amp

0

J+(t )

ħ d t +
∫ Tr amp

0

J−(t )

ħ d t (4.24)

We find that the total number of atoms tunneling out of the A lattice site in 500 µs is 0.64.
This number is quite big, we have moreover not taken into account the 300 µs phase during
which H2 and V are ramped down.
This derivation shows that the 1064 nm laser should be ramped up as fast as possible, to
power values as low as possible 3. Let us temper this result by noting that all sorts of
gradients, interactions and asymmetries (notably in terms of well depths asymmetry (see
Fig. 4.13) which can easily reach a few kHz ) can in fact suppress the number of atom
tunneling out of site A by making tunneling non resonant even when the power of the lasers
is being ramped down. Experiments supporting this claim, not reported in this manuscript,
wherein atoms are loaded in every other lattice site along the bipartition axis have shown
that tunneling remains negligible during the bipartition step.

3i.e. these power values, although low, should still correspond to high enough scaling factors (see sec.
4.2.1) and oscillation periods small in comparison to on-site interaction time scales
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Experimental snapshot: an alternative bipartition route

The initially envisioned bipartition protocol did not build on position to momentum map-
ping techniques. It was in fact based on well known band mapping methods. Band mapping
is a technique which reveals the quasi momentum distribution of the atoms. It requires that
the atoms be freed from the lattice fast enough that they don’t have time to move from their
initial positions, and slow enough so that band structure is mapped onto the free particles
parabola (dispersion relation). This is different from time of flight techniques which reveal
the momentum distribution of the particles [47].
The band mapping bipartition technique uses the correspondence, in the deep lattice limit,
between the wells’ energy levels (as given by the harmonic approximation) and the various
bands of the band structure.

Figure 4.13: V ,η and φ represent respectively the depth of the 532 nm lattice in units of recoil
energy at 532 nm, the depth ratio between the 1064 nm and 532 nm lattices and the phase between
both which sets the general shape and symmetry of the lattice. Left: The lattice band structure
for the parameters shown above. Right: In blue the total dipolar potential for the parameters
shown above: only one lattice site (two wells) is shown, the purple horizontal lines correspond to
energy levels of the center well as given by the harmonic approximation, the orange horizontal lines
correspond to energy levels of the well on the edge as given by the harmonic approximation, purple
and orange parabolas are the osculating parabolas of the right and left wells as given by the harmonic
approximation. The oscillation frequency ω of the trap is related to the second derivative of the

potential energy at the bottom of the trap ω=
√

1
m

d 2E
d x2 . For the deep 1D bichromatic lattice shown

above there is a rather clear correspondence between harmonic energy levels and the lattice band
structure.

This correspondence meant that unraveling the quasi-momentum distribution was akin to
unraveling the bipartite nature of the system, since, in some configurations like the one
shown above, every other atom populates a different band. Contrary to the symmetric
configurations for which the T/4 bipartition works, the bandmapping bipartition favors
asymmetric potentials.
Unfortunately, while this may be true for a 1D lattice, this feature is hard to generalize, let
alone to observe for a 3D anisotropic bichromatic lattice. This is due to the rather compli-
cated shapes of the such lattices’ Brillouin zones, the various and sometimes incompatible
(a)diabaticity conditions that must be fulfilled, and the inadequacy of our imaging set-up.
Moreover, because of the symmetry of the quasi momentum distribution (with respect to
q = 0), the band mapping bipartition always generates (at least) three clouds, which is
detrimental to signal to noise ratio.
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Figure 4.14: Inset: The third Brillouin zone of the lattice, the precise visualization of such 3D
regions is beyond current imaging capabilities. Right: band mapping bipartition coupled to the
Stern & Gerlach technique. This alternative route was abandoned because of the poor imaging

quality
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4.3 Results

4.3.1 Experimental protocol

In order to estimate the various quantities discussed in the beginning of this chapter Cz ,
C A/B

z and C AB
z as a function of time, the dipolar dynamics must be observed a great many

number of times. For the experiments discussed in this chapter, we’ve decided to focus
on three interaction times tdyn = 0,15 and 30 ms. For each of these interactions times
a total of 463, 502 and 457 photos were taken respectively while only 200 were taken
for every interaction time studied in Chap. 3. This decision was motivated by the slow
convergence of the variance and covariances estimators: by accumulating more photos for
fewer interaction times we are able to construct more reliable estimators of the three chosen
variance covariance matrices. These photos are the compilation of subpackets of 35 pictures
each taken over 4 days. The limited size of the subpackets speaks of the necessity to regularly
check and compensate for any experimental drift.
Typical experiments start out with a condensate (N ∼ 104). The experimental precautions
taken for the 532 nm lattices (see sec 3.3.1) extend to the 1064 nm lattice whose average
depth is ≈ 80−100 Er ,1064.
The experimental laser sequence is shown in sec. 4.2.2.

4.3.2 Data treatment protocol

The information enclosed in the data is retrieved by fitting the clouds’ intensity profiles
with 1D Gaussian functions. These fits provide us with the clouds’ total signals and the
related standard errors (see Fig. 4.15).
To analyze the data we use the scheme referenced at the end of Chap. 2. As such we first
correct the number of atoms found using absorption imaging by a factor of 14% accounting
for the atoms ending up in the subsidiary ABis family (see Fig. 4.9). Total signal drifts are
then corrected for as they can fictitiously increase the variances of the various quantities
that are measured (the Ams ). Drifts are corrected for each family independently. Next, we
compute the detectivity factors (the so called αs of Chap. 2) (30 ≤α≤ 60) using the data
points at time tdyn = 0 ms so that the average fractional populations are symmetric at all
times and equal to those theoretically predicted for a π

2 pulse. At this point the Eqs. 2.63
are applied to get rid of the noises linked to the detection chain. To get rid of the number
and bipartition noises we then use the bipartite Delta scheme presented in Eqs. 2.77 on the
non normalized variance covariance matrices obtained at the previous step.
At this point, we compute the variances of each family’s magnetization -Var

(
Ŝ A/B

z

)
- and

that of the total system -Var
(
Ŝz

)
- as well as the corresponding onsite fluctuations ΣA/B

z

and Σz . We then compute the contribution of the RF noise (∆t=0
RF ) for each data point at

time tdyn = 0 ms by forcing the normalized variance of the global system
Var(Ŝz )

AT (0) to 3/2.

In other words we have ∆t=0
RF = Var(Ŝz )

AT (0) −3/2. This value is used to correct the variances at
greater interaction times by an amount that is proportional to the remaining number of
atoms ∆t>0

RF =∆t=0
RF

AT (t )
AT (0) . The same atom number proportionality rule is used to correct the

magnetization variances for the subfamilies at all times ∆t≥0
RF =∆t=0

RF
A A/B (t )
AT (0) .
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Figure 4.15: The clouds get larger and larger as their spin goes from +3 to -3, clouds on the
bottom of typical pictures (±3, ±2) are quite big, this is detrimental to the reliable estimation
of these clouds’ signal, which in turn affect the whole properties of the variance covariance ma-
trix via, notably, the detectivity factors. The reliability of these estimations is quantified by
these clouds’ fits’ standard error to signal ratios ϵ, ϵ = std. err of the fit

fit signal . For example we have
at time tdyn = 0 ms {ϵ−3 = 14.3%, ϵ−2 = 3.1%, ϵ−1 = 1.7%, ϵ0 = 1.7%, ϵ1 = 1.8%, ϵ2 = 3.1%, ϵ3 = 19.9%}
to be compared with the experiments of Chap.3 where at time tdyn = 0 ms, we had
{ϵ−3 = 8.1%, ϵ−2 = 2.3%, ϵ−1 = 1.5%, ϵ0 = 2%, ϵ1 = 2%, ϵ2 = 2.6%, ϵ3 = 5.6%}. The relative estimation
of the number of atoms in each clouds at 30 ms is better and the fits’ standard errors to signal
ratios are {ϵ−3 = 4%,ϵ−2 = 2.8%, ϵ−1 = 2.4%, ϵ0 = 2.1%, ϵ1 = 2.4%, ϵ2 = 3.5%, ϵ3 = 6%}. The decrease of
the fitting uncertainty shows that the reliability of the determination of each cloud’s total signal
is dictated not by the sole size of the clouds but rather by the signal per pixel quantity which is

governed by both the cloud’s size and the number of photons emitted.

4.3.3 Results

The average atom numbers at time tdyn = 0, 15 and 30 ms are 10000, 6200, 49504 respectively.
The average over all data points of the RF contribution at time tdyn = 0 ms to the normalized
variance Var

(
Ŝz

)
/AT of the magnetization is 0.9× 1.5 where 1.5 represents the expected

normalized variance of the magnetization at time tdyn = 0 ms. This value is comparable to
the experiment presented in Chap. 3.
Results are summarized in the table and graphics below

Bipartite experiments results

Interaction time (ms) 0 15 30

Var
(
Ŝz

)
/AT 1.5(± 0.7) 2.1(±1.2) 1.5(±0.8)

Var
(
Ŝ A

z

)
/A A

T 1.7(±1.3) 7.8(±3.8) 4.8(±0.6)
Var

(
ŜB

z

)
/AB

T 1.9 (±1.6) 4.3(±1.3) 5.2(±1.7)
Cz /AT 0.1(±0.7) -0.3(±1.1) -1.4(±0.8)
C A

z /A A
T 0.2 (±1.2) 5.2(±3.7) 1.7(±0.7)

C B
z /AB

T 0.6(±1.6) 2.1(±1.2) 2.4(±1.7)
C AB

z /AT -0.2(±0.3) -2.1(±1.5) -1.8(±0.7)
a±3 0.016 0.055 0.082
a±2 0.081 0.12 0.13
a±1 0.24 0.20 0.18
a0 0.33 0.24 0.21

4These numbers should be multiplied by a factor 0.86 to account for the bipartition defects
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Figure 4.16: Blue: Time evolution of the whole system’s magnetization variance. Yellow: Time
evolution of the whole system’s magnetization correlator Cz /AT (see Eqs. 4.3). The variance is
compatible with 1.5 at all times, while the evolution of Cz is compatible with the results of the
previous chapter, and numerical predictions (red). The shaded area corresponds to the expected
dispersion zone of the variance data points for the perfect experiment (i.e. with the sole quantum

projection noise at time tdyn = 0 ms). Error bars correspond to two standard deviations.

Figure 4.17: Time evolution of the variance of the magnetizations of both A and B families. The

initial values of the variances are compatible with the theoretical value Var
(
Ŝ A,B

z

)
/N A/B = 1.5. Error

bars correspond to two standard deviations.
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Figure 4.18: Time evolution of the bipartite correlators C A
z , C B

z , and C AB
z . The intra and inter-

familly correlations are of opposite signs. The A and B family correlators evolution is compatible
at all times as can be expected from symmetry arguments.

The data which we present here has not yet been compared to theoretical predictions. We
can however already conclude to the development of bipartite spin correlations of different
natures within (C A/B

z > 0) and between (C AB
z < 0) the two atomic families that compose our

system. This shows that correlations in our system are more intricately textured than can
be presumed from the negativity of the global correlator Cz < 0.
Extending the spin correlation length analysis of the previous chapter to these data we find
a mean intra-family spin correlation length

ξA +ξB

2
= 0.56

λ

2

and a inter-family spin correlation length

ξAB = 0.62
λ

2

where we have assumed c AB
z (0) =

ΣA
z

NA
+ ΣB

z
NB

2 in Eqs. 3.26. The inter-family spin length designates
the spatial scale over which the correlations between an atom belonging to the A family
and an atom belonging to the B family extends.
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Conclusion

T’imaginais-tu donc l’univers autrement ?
– Victor Hugo (Les contemplations - Ce que dit la bouche d’ombre)

In the course of my PhD, I have studied the development of spin correlations in an ensemble
of lattice trapped dipolar atoms.

In this manuscript I have reported on two complementary experiments in which we tracked
the growth of these correlations without relying on tomography like techniques. These
experiments built on the repeated measurements of global Zeeman populations and the
estimation of these observables’ first and second statistical moments.
As it turns out, these statistical moments are affected by many phenomena, some of which
are of physical significance (dipolar dynamics), and some of which are mostly irrelevant
(e.g. preparation or fluorescence noise) to our experimental endeavor. In the second chap-
ter of this manuscript, I have shown how to extract the sole contribution of the quantum
projection noise from our data in a mathematically rigorous way.
In the third chapter of this manuscript, we prove -experimentally- that spin correlations
do indeed develop in our system as it thermalizes through dipole dipole interactions. The
quantum nature of these correlations is supported by the relatively good agreement of the
experimental data with numerical simulations and theoretical predictions. The results of
this chapter illustrate the correlation tracking possibilities offered by platforms involving
higher spin particles. Indeed, for spin 1

2 particles, Cz is zero as in this case the on site

fluctuations accounted for by Σz =∑
i

〈(
sz

i

)2
〉
−〈

sz
i

〉2
are constant5.

In the fourth chapter we probe at these correlations using a novel bipartition method. We
show that the correlations developing in our system are more finely structured than what
might, a priori, be inferred from the results of the third chapter’s experiment. This struc-
ture is in part related to the anisotropy of the dipole dipole interactions governing in our
system. The results of this second experiment have not been confronted to theoretical pre-
dictions yet.

In conclusion still, we can positively say that thermalization of isolated quasi-pure dipole
dipole coupled systems like ours goes with the growth of spin correlations and that this
growth is negligibly modified by dissipative phenomena. This is reminiscent of quantum
thermalization scenarios - previously demonstrated for smaller systems in [76] - wherein
isolated pure systems evolve towards a steady state through the entanglement of their var-
ious components. Contrary to classical thermalization scenarios in which thermalization
happens through interaction with another system, the thermalization that is discussed here
only involves processes (spin exchanges) internal to the system.
Many questions remain to be answered in the short term: can there be, for systems with
finite temperature, thermalization without entanglement? Are weaker kinds of quantum
correlations sufficient? How much of these correlations should develop before the system

5
〈(

sz
i

)2
〉
= 1

4
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reaches a steady state? On what spatial scale? Are there universal features to these phe-
nomena?

These question are out of the reach of the current experimental set up. Answering them
requires the ability to better track quantum correlations and or entanglement. The quan-
tumness of correlations is in general estimated by the so called quantum discord quantity,
this quantity however is ill-suited to experimental endeavors involving as many atoms as
ours. The quantum covariance on the other hand only extends to systems having reached
thermal equilibrium. Measuring entanglement is feasible, it would however require a greater
stability of the magnetic field permeating the science chamber. This could be achieved
through active regulation schemes, which are in part impeded by the metallic cell we use
and the inability to measure the magnetic field’s amplitude in regions close to the conden-
sate.
The constancy of this field would not be the only technical obstacle to overcome either, go-
ing forward the quality of the imaging should be improved. Decoupling the magneto-optical
trap and imaging beams, and using larger beams to illuminate the atoms could be the way
to go in order to achieve higher signal to noise ratios and a more homogeneous imaging,
this however would render the experiment even more complex, which is not desirable. A
complete overhaul of the imaging system would perhaps be a more sensible alternative.
It would otherwise be beneficial to rein in more efficiently the intensity fluctuations of the
main laser system (425 nm) and address the signal drifts problems by aiming at shorter
cycling times.
These upgrades would certainly allow the chromium experiment to explore other facets of
isolated systems’ thermalization. Further down the road other related research paths could
be trod upon, one can wonder for example how is quantum thermalization modified in the
presence of disorder [77] [2]? Is our platform a good candidate for the study of itinerant
ferromagnetism, as would be suggested by the local ferromagnetism protection properties
reported in [78]? And finally (or not) can the correlations we observe be used, in particular
for interferometric purposes?
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A The 851-425 nm laser chain

Toute votre félicité
Sujette à l’instabilité

– Pierre Corneille (Polyeucte martyr)

The cooling and imaging beams at 425 nm are generated through the frequency doubling of
851 nm laser. This light was formerly produced by a Ti:Sa device. In the early stages of this
PhD, this system was replaced by a master diode - tapered amplifier assembly whose workings
are described in this appendix. We also discuss the intricate locking schemes relative to this
laser system.

A.1 Master oscillator - Tapered amplifier system

The 425 nm laser is generated through frequency doubling of a 1.5 W 851.104 nm laser
which is output by a dedicated diode - tapered amplifier system.

The Master Diode (MD) is the first building block of this laser system. This particular MD
is a frequency stabilized laser diode, it is stabilized using a Littrow type external cavity,
its theoretical linewidth is evaluated to 50 kHz. Its lasing threshold is 54 mA, and it is
usually working at 126 mA input current which corresponds to an approximate 30 mW
output power.
The 851.1 nm laser produced by the MD is mode adapted using a telescope.

Figure A.2: Left: The MD initial output mode. Right: the final output mode after setting up
the adequate cylindrical telescope. The telescope’s lenses ( f = 25/−10) were chosen to produce a
transverse mode best suited to the tapered amplifier’s input monomode fiber. The distance between
the telescope’s lenses was chosen to best collimate the laser beam. At 150 cm from the telescope
the 1

e2 radii are 1014 and 1115 µm(images are not on the same scale). Circle like defaults are belong
to the camera screen

The laser is then split into two parts of unequal power. The first part (few mW) follows the
locking path (in green in Fig. A.1) (EOM+AOM) and is further split into two parts one of
which goes to a wavemeter (purple path in Fig. A.1) and gives us the value of the laser’s
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wavelength (to picometric precision), while the other goes to a Fabry Perot cavity (FPC)1

and serves the actual locking purpose. In our case we stabilized the MD’s frequency using
the Pound-Drever-Hall (PDH) technique.
In order to implement the PDH method, we use an electro optic modulator. An EOM is
basically a crystal whose refractive index can rapidly change in response to an electrical
stimuli. This index variation will imprint a phase modulation on any light wave traveling
the crystal medium. In this way, the laser we use can be phase modulated, in particular
a sinusoidal phase modulation will add mainly two sidebands (an infinity in fact with
decreasing amplitudes) to the spectral decomposition of the laser light.
In practice, once it passes the EOM the 851 nm laser light comprises three frequencies :
the carrier at 4.4291015H z , and two other frequencies (at ±25M H z from the main one in
our case) which constitute the so-called sidebands.
These sidebands do not share the incident beam’s frequency, but the phase relation between
them is well defined. If the sidebands are made to interfere with the fundamental component
of the reflected beam for example, the sum will display a beat pattern at the modulation
frequency which is collected and analyzed using a phase shifter, a mixer and a low pass
filter. The phase of the beat pattern gives the phase of the reflected beam, thus informing
us on the position of the laser frequency with respect to the cavity resonance.
In practice, the signal reflected off the cavity and onto a photo-diode (cf. fig. A.1) is
transmitted to a PDH module, a component which allows us to create, shape and improve
the error signal by tuning three parameters (CH0: The amplitude of the demodulation
signal sent to the multiplier / CH1: The amplitude of the modulation sent to the EOM and
also the relative phase between both).

Figure A.3: Left: The PDH error signal and cavity reflection peaks of the 851.1 nm laser. Right:
The residual frequency fluctuations are evaluated to less than (≃) 0.4 MHz.

This was for the locking to the FPC, the other part of the laser, the most powerful one (25
mW) actually follows the amplifying and frequency doubling path (in blue in Fig. A.1).
This part of the laser is first used to seed a tapered amplifier (TA) (TOPTICA Boosta Pro)
through specifically designed fiber and fiber input port. The beam generated by the TA
then goes through a double stage optical isolator (Transmittance = 85%) before connecting
to a high power tolerant fiber; the injection efficiency of this fiber which was evaluated to
60% is quite good given that the transverse mode of the light emitted by the TA is not

1In practice, we use an ultra low expansion (ULE) cavity as a reference. It uses a material which expansion
coefficient changes sign at a given temperature (around 20 ◦C in theory), the cavity is subjected to a servo
loop locking it to this critical temperature (10 mK precision). This ensures an almost constant cavity length,
and all in all, a stable laser frequency at ±1 MHz
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Gaussian. The typical output power of this whole system is 1.5 W, which is identical to
that of the Ti:Sa laser at maximum efficiency, moreover this system displays an output
power plateau for seed powers higher than 15 mW, which is a great stability feature.

A.1.1 The frequency doubling process

The frequency doubling occurs in an external four-mirror ring commercial cavity (model
FD–SF–07), produced by Tekhnoscan. The second harmonic is generated in a 15-mm-long
lithium triborate (LBO) crystal.
The efficiency of the doubling mechanism depends on the quality of the laser injection into
the cavity. Since the Ti:Sa laser was already injected into said cavity, we started by checking
the good correspondence between the two lasers’ modes then aligned the TA’s beam on the
Ti:Sa one.

Figure A.4: Comparison of both laser modes. Left: MD/TA laser beam. Right: the Ti:Sa mode.
The two images are not at the same scale. At 54 cm from the TA’s output fiber the two waists of
the TA laser are respectively 500 and 530 µm, while those of the Ti:Sa beam are measured to be
405 and 580 µm at 60 cm . These distances correspond to the rough position of the cavity injection
lens. Due to the careful choice of the collimating lenses of the TA output fiber, the two modes show

good correspondence, in fact the DM/TA system produces a laser of lower ellipticity.

The typical output power of the doubling cavity is 330 mW.
We should report here that the cavity length is itself subjected to a servo-loop based on the
Hänsch Couillaud method. The Hänsch Couillaud method is a polarization sensitive locking
technique. Here it allows us to control the doubling cavity length through a piezoelectric
component so that the IR laser stays resonant, this guarantees that slow and small ampli-
tude drifts of the IR laser do not affect the production of the 425.5 nm light too greatly.
The Hänsch Couillaud error signal has proven to be extremely sensitive to the polariza-
tion of the infrared laser at 851.105 nm, in particular its offset varied periodically as the
polarization did too, this problem was solved placing a cleanup PBS after the high power
tolerant fiber.
At this point, the 425 nm light has no reason to match the

∣∣7S3
〉→ ∣∣7P4

〉
cooling transition.

To make it so, we use use a hollow cathode lamp and a saturated absorption based lock
scheme.
The saturated absorption signal provides us with a dispersive atomic signal informing us on
the detuning of the laser with respect to the cooling transition. This information we use to
fine tune the 851 nm laser frequency using an acousto-optic modulator. To further counter
any slow frequency wanders, of the FPC in particular, the voltage control oscillator which
controls the RF frequency fed to the acousto-optic modulator is retroacted upon -using the
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same saturated absorption error signal- so that the laser stays resonant with the cooling
frequency2.

2The sum frequency of the 851 nm laser and the RF frequency is given by Fabry Perot cavity lock scheme
( f851 +2 f AOM = fcavi t y ), changing the AOM’s frequency will make the PDH system described above act on
the infrared frequency so that this equation stays true. In this way, the 425 nm light always matches the
cooling transition.
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B The bichromatic lattice: alignment
procedures

Il n’existe aucune organisation qui puisse se protéger d’un grain de sable.
– Michel Tournier

B.1 Bichromatic lattice alignment procedures

The alignment of the bichromatic lattice comes down to the alignment of both green and
infrared lattices.

B.1.1 532 nm lattice alignment

To align the 532 nm lattice, one can start by forming a cloud of magnetically trapped atoms,
which are then aimed at using the 532 nm beam.

Figure B.1: In order to align the 532 nm laser beam, we use magnetically trapped atoms (see
Chap.1). As it turns out the 532 nm light couples the 7P4 level to the 7D3/4/5 levels, this coupling
induces a certain light shift which impairs the proper imaging of the atoms (the 7P4 level is involved
in the imaging transition). As a result, we visualize the position of the 532 nm beam directly on the

cloud of magnetically trapped atoms in the form of a whitish spot.

Once this rough adjustment has been made, it is further refined by trapping the atoms
in the dipolar dimple presented in the first chapter which is also aimed at the 532 nm
beam. At this stage of course we do not trigger the evaporation process, this is because the
propensity of thermal gases to expand make them easier to aim at.
After centering the incident beam, we carefully align the reflected one, by reinjecting it in
the 532 nm fiber as shown in the following schematics
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Figure B.2: We realign the reflected 532 nm beam by re-injecting it in the fiber outputting the
outgoing beam

Finally, we measure the depth of thus created 532 nm lattice by checking for atomic diffrac-
tion. This alignment is then gradually improved through fine alignment of the reflected
beam.

B.1.2 1064 nm lattice alignment

Once the 532 nm lattice has been set up, the 1064 nm outgoing beam is aligned on the 532
nm trajectory using a pair of distant diaphragms. The 1064 nm laser is also reinjected back
into the dedicated output fiber.

Final notes:

� The voltage command sent to the AOMs controlling the lattice beams’ powers is
increased after the atoms have been released from the lattices and the Verdi shutter
closed, so that these AOMS remain warm

� The beams should be injected in their dedicated fiber at low laser power. The corre-
sponding AOMs however should always be used at maximum RF power

� Non linear power related effects in the lattices’ injection fibers make it so that the
adequate position of these fibers’ injection lenses depend on the injected beams’ power

B.2 Double lattice benchmark : Alternated loading

The structure of the double lattice can be ascertained by loading atoms in every other
lattice site along the bipartition axis. The sequence leading to this alternated loading is
quite simple as it only requires to invert the order in which the 1064 nm and 532 nm lasers
are switched on.
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Figure B.3: The laser ramps used to load every other lattice site

The number of families upon bipartition depends on the order in which the lasers are
switched on. When the atoms are first loaded in the 1D 1064 nm lattice, only one family
can be observed after the bipartition step. When this step is omitted, two atomic families
can be seen.
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C The partial covariance

All models are wrong, but some are useful.
– George E. P. Box

In this appendix we present the partial covariance technique which gets rid of irrelevant
common mode correlations between given random variables.

C.1 The partial covariance technique

C.1.1 Definition

When two stochastic variables X and Y are indirectly correlated via a third variable1 Z , it
is customary to correct for these unwanted correlations using partial covariance schemes as
is done in [79][80].
The general idea is to consider X , Y and Z as vectors of an Euclidean space whose inner
product is given by the covariance.

〈X ,Y 〉 = cov(X ,Y ) (C.1)

In this space we can write

X =αZ +X ′

Y =α′Z +Y ′ (C.2)

Where

� X ′ and Y ′ are orthogonal to Z

� α= cov(X ,Z )
Var(Z )

� α′ = cov(Y ,Z )
Var(Z )

This gives

cov(X ,Y ) =αα′Var (Z )+cov
(
X ′,Y ′)

= cov(X , Z )cov(Y , Z )

Var (Z )
+cov

(
X ′,Y ′) (C.3)

The total covariance between X and Y is in part explained by the first term of the right
hand side which represents their non zero projection on vector Z , we call this contribution
to the covariance a common mode correlation.
In the case where this common mode corresponds to uninteresting correlation biases, (for ex-
ample the fluctuations of the total number of atoms), then the residual or partial covariance
cov

(
X ′,Y ′) makes for a somewhat more insightful measurement of the correlations. This

residual part is the partial covariance, hereafter denoted pcov, of X and Y with respect to Z

1In the following, this third variable will be called fluctuating parameter or control parameter
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pcov(X ,Y ; Z ) = cov
(
X ′,Y ′) (C.4)

Similarly we define the partial variance pvar as

pvar(X ; Z ) = pcov(X , X ; Z ) (C.5)

Figure C.1: Geometrically the partial covariance can be seen as what remains of the covariance,
when the X and Y variables are projected onto the subspace orthogonal by the fluctuating param-

eters, that is cov (rX ,rY )

Note that in general, the experimental application of partial covariance schemes requires
the careful monitoring of the control parameter Z .
This formalism can be extended to several control parameters, for example the partial
variance covariance matrix of the two variables X and Y corrected for both I and J is given
by

Σp =Σ−ΣV ΣI ,JΣ
T
V (C.6)

Where Σ is the variance covariance matrix of variables X and Y and

Σp =
(

pvar(X ; I , J ) pcov(X ,Y ; I , J )
pcov(X ,Y ; I , J ) pvar(Y ; I , J )

)
ΣV =

(
cov(X , I ) cov(X , J )
cov(Y , I ) cov(Y , J )

)
ΣI ,J =

(
Var (I ) cov(I , J )
cov(J , I ) Var (J )

) (C.7)

and ΣT
V is the transpose of ΣV .

In our case, there are several fluctuating parameters, amongst which the total number of
atoms in the condensate AT and the number of atoms in each of the A/B families A A

T /AB
T .

It is not possible to monitor these parameters during the experiment, however as one can
see from Eq. C.6, the exact knowledge of the control variables is not required in order to
compute the partial variance covariance matrix, only a few particular statistical properties
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are needed. Moreover as it turns out

AT =∑
i

Ai

A A
T =

FA∑
i

Ai

(C.8)

Where FA is the A family and Ai the number of atoms in cloud i . This means that the
variances and covariances of these parameters can easily be computed using experimental
data, for example

Var (AT ) =
∑

i
Var (Ai )+2

∑
i ̸= j

cov
(

Ai , A j
)

(C.9)

Since these corrections do not require the additional monitoring of the fluctuating param-
eters, the partial covariance used here is called self corrected partial covariance.

C.1.2 Aparté on constant correlation noises and variable correlation noises

Correlations

The correlation between two variables X and Y is defined as

corr(X ,Y ) = cov (X ,Y )p
Var (X )

p
Var (Y )

(C.10)

In the euclidean space wherein the covariance plays the role of the inner product, these
correlation matrices represent the cosine of the angle between basis vectors.

Constant correlation noises

Preliminary note: All the correlations matrices shown below are obtained through numer-
ical experiments similar to those presented in Chap. 2. The results of these experiments
are covariance or correlation matrices mimicking those obtained in the real lab experiment
at time tdyn = 0 ms. Depending on the situation, we include either or all of the quantum
projection noise, the number noise or the bipartition noise in these numerical experiments.
We do not include the detection chain noises.

Correlation matrices of populations affected solely by constant correlation noises are always
the same (contrary to the covariances matrices) and do not depend on the specific experi-
ment. These noises are for example the bipartition noise (Bip) and the atom number noise
(NN).
For the sake of concreteness, let us consider the latter, its effect on the tdyn = 0 ms popula-
tions can be described via the transformation

Ai →αAi ∀i ∈ [|1,7|] (C.11)

Where α is some random real number.
The covariances between populations are affected as follows

cov
(

Ai , A j
)→α2cov

(
Ai , A j

)
(C.12)

If we take into account the fact that Ai can be written at time tdyn = 0 ms Ai = βi j A j , we
get

cov
(

Ai , A j
)→α2cov

(
Ai , A j

)=α2βi jVar
(

A j
)

(C.13)
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The correlations between populations on the other hand are insensitive to this noise and
we have

corr
(

Ai , A j
)→ α2cov

(
Ai , A j

)
α2

√
Var (Ai )Var

(
A j

) = corr
(

Ai , A j
)

(C.14)

If we take into account the fact that Ai can be written at time tdyn = 0 ms Ai = βi j A j , we
see that these correlations are in fact all equal to 1

corr
(

Ai , A j
)= α2cov

(
Ai , A j

)
α2βi jVar

(
A j

) = 1 (C.15)

This means that the population correlation matrix, CNN, is in this case full of ones, ex-
pressing the fact that the space spanned by the 14 populations is but a line

CNN =



1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1



(C.16)

The same reasoning stands for the bipartition noise and we can show that correlations
between populations plagued by this noise can only take two values : ±1. The correlation
matrix, CBip in this case is given by

CBip =



1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1
−1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1
−1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1
−1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1
−1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1
−1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1
−1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1



(C.17)
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Adding up both noise, we end up with a two sets of non colinear vectors: this time, the
subspace spanned by all 14 populations is in fact 2D dimensional, it is a plane.

CNN, Bip =



1 1 1 1 1 1 1 x x x x x x x
1 1 1 1 1 1 1 x x x x x x x
1 1 1 1 1 1 1 x x x x x x x
1 1 1 1 1 1 1 x x x x x x x
1 1 1 1 1 1 1 x x x x x x x
1 1 1 1 1 1 1 x x x x x x x
1 1 1 1 1 1 1 x x x x x x x
x x x x x x x 1 1 1 1 1 1 1
x x x x x x x 1 1 1 1 1 1 1
x x x x x x x 1 1 1 1 1 1 1
x x x x x x x 1 1 1 1 1 1 1
x x x x x x x 1 1 1 1 1 1 1
x x x x x x x 1 1 1 1 1 1 1
x x x x x x x 1 1 1 1 1 1 1



(C.18)

Where x is a random number between 1 and -1, whose actual value is random.

Variable correlation noises

Variable correlation noises are characterized by the fact that the entries of their correlations
matrices are different as soon as the number of shots taken to build the correlation matrix
is limited. The quantum projection noise is a variable correlation noise. Below, we give two
correlation matrices built on a series of 50 realizations of the numerical experiment with the
quantum projection noise being the only noise to be included. These correlation matrices
are denoted CQN

C 1
QN =



1. −0.04 −0.38 −0.06 −0.2 0.06 −0.06 −0.1 −0.14 0.38
−0.04 1. −0.48 −0.2 −0.24 −0.06 −0.14 0.16 0.06 −0.08
−0.38 −0.48 1. −0.44 −0.16 −0.1 0.04 0.1 0. −0.14
−0.06 −0.2 −0.44 1. −0.2 0.14 0.08 −0.04 0.02 −0.2
−0.2 −0.24 −0.16 −0.2 1. 0.02 0.04 −0.24 0.04 0.26
0.06 −0.06 −0.1 0.14 0.02 1. −0.4 0.02 −0.24 0.02
−0.06 −0.14 0.04 0.08 0.04 −0.4 1. −0.38 −0.42 0.04
−0.1 0.16 0.1 −0.04 −0.24 0.02 −0.38 1. −0.32 −0.56
−0.14 0.06 0. 0.02 0.04 −0.24 −0.42 −0.32 1. −0.14
0.38 −0.08 −0.14 −0.2 0.26 0.02 0.04 −0.56 −0.14 1.


(C.19)

C 2
QN =



1. −0.04 −0.34 −0.14 −0.14 0.1 −0.06 −0.16 −0.02 0.22
−0.04 1. −0.38 −0.48 −0.16 −0.1 0.2 −0.12 0.18 −0.22
−0.34 −0.38 1. −0.3 −0.18 −0.1 −0.14 0.3 −0.14 0.02
−0.14 −0.48 −0.3 1. −0.2 0.16 −0.1 −0.06 −0.04 0.1
−0.14 −0.16 −0.18 −0.2 1. −0.06 0.12 −0.04 0. −0.04

0.1 −0.1 −0.1 0.16 −0.06 1. −0.1 −0.2 −0.36 −0.2
−0.06 0.2 −0.14 −0.1 0.12 −0.1 1. −0.42 −0.22 −0.34
−0.16 −0.12 0.3 −0.06 −0.04 −0.2 −0.42 1. −0.42 −0.18
−0.02 0.18 −0.14 −0.04 0. −0.36 −0.22 −0.42 1. 0.04
0.22 −0.22 0.02 0.1 −0.04 −0.2 −0.34 −0.18 0.04 1.


(C.20)
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C.2 Benchmark

To benchmark the partial covariance scheme we use those same numerical experiments we
have already used in the previous section. We remind the reader that these experiments
mimic the results of the actual lab experiment at time tdyn = 0 ms. For each realization
of the experiment we choose a random number of atoms according to the distribution
N (10000,700), these atoms are then divided into two families according to the distribution
N (50%,3%), and then for each family we produce a random sample of 14 Zeeman clouds
according to the theoretical populations of the initial experiment state (the one obtained
after a π

2 pulse).
The general idea of this benchmark is to try to recreate variance covariance matrices similar
to those engendered by the sole projection noise by applying the partial covariance scheme
to variance covariance matrices containing the additional contributions of the bipartition
and number noises. The criterion we have retained to test the efficiency of the partial
covariance is the distance between the partial covariance matrices (or corrected covariance
matrices) and the quantum projection matrices (that is those containing the sole contribu-
tion of the quantum projection noise).
In all of the following the distance between two matrices M and N is given by

|M −N | =
√∑

i , j
(Mi , j −Ni , j )2 (C.21)

In a first attempt we show the result of the partial covariance scheme when only the atom
number (NN) and bipartition (Bip) noises are taken into account without the projection
noise. In this case, to get rid of all the randomness in the data it is necessary to compute
the partial covariance with respect to the subspace generated by the 14 populations, which
as you remember is plane! The initial variance covariance matrix2

CovNN,Bip =



2211 5529 7371 5529 2211 81 203 271 203 81
5529 13823 18430 13823 5529 202 507 676 507 202
7371 18430 24572 18430 7371 270 675 900 675 270
5529 13823 18430 13823 5529 202 507 676 507 202
2211 5529 7371 5529 2211 81 203 271 203 81

81 202 270 202 81 2200 5499 7331 5499 2200
203 507 675 507 203 5499 13747 18328 13747 5499
271 676 900 676 271 7331 18328 24436 18328 7331
203 507 675 507 203 5499 13747 18328 13747 5499
81 202 270 202 81 2200 5499 7331 5499 2200


(C.22)

2For convenience, we show a 10 by 10 matrix corresponding to the -2 to 2 spin states only instead of the
full 14 by 14 matrix corresponding to -3 to 3 spin states
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becomes when computing the partial covariance with respect to A A
−3 (or A A

−2, orA A
−1 or

A A
−3 + A A

1 which are all colinear)

Cov
A A
−3cor r ected

NN,Bip =



0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 −1 −1 −1 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2163 5406 7208 5406 2163
0 0 −1 0 0 5406 13516 18020 13516 5406
0 0 −1 0 0 7208 18020 24026 18020 7208
0 0 −1 0 0 5406 13516 18020 13516 5406
0 0 0 0 0 2163 5406 7208 5406 2163


(C.23)

Complete correction using Eq.C.6 leads to

Covcor r ected
NN,Bip =



0.1 0. 0. 0. 0.1 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.1 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0.1 0. 0. 0. 0.1 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.1 0. 0. 0. 0.1
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.1 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.1 0. 0. 0. 0.1


(C.24)

Which means that our data does not contain any sort of randomness anymore. We have
computed the orthogonal projection of our data to all the basis vectors, we are left with
the 0 vector.
When the quantum projection noise is included, the uncorrected covariance matrix is given
by 

2647 5441 7263 5440 2179 72 180 246 168 69
5441 14762 18138 13578 5437 170 425 591 406 166
7263 18138 25786 18119 7261 220 567 785 541 219
5440 13578 18119 14742 5433 169 436 596 412 166
2179 5437 7261 5433 2643 65 170 233 161 68

72 170 220 169 65 2660 5471 7302 5478 2189
180 425 567 436 170 5471 14836 18239 13684 5458
246 591 785 596 233 7302 18239 25895 18244 7287
168 406 541 412 161 5478 13684 18244 14860 5463
69 166 219 166 68 2189 5458 7287 5463 2652


(C.25)
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Upon correction (for the bipartition and the number noises) we find

421 −114 −152 −111 −44 2 1 0 −2 −1
−114 887 −378 −282 −114 3 −3 0 0 0
−152 −378 1062 −383 −149 −2 −1 2 2 0
−111 −282 −383 888 −113 −1 3 −1 0 −2
−44 −114 −149 −113 420 −1 1 −1 0 2

2 3 −2 −1 −1 422 −115 −151 −112 −43
1 −3 −1 3 1 −115 881 −374 −276 −116
0 0 2 −1 −1 −151 −374 1056 −382 −150
−2 0 2 0 0 −112 −276 −382 885 −115
−1 0 0 −2 2 −43 −116 −150 −115 423


(C.26)

Whereas the expected matrix3 is given by

CovQN =



425 −110 −146 −110 −44 0 0 0 0 0
−110 897 −366 −275 −110 0 0 0 0 0
−146 −366 1074 −366 −146 0 0 0 0 0
−110 −275 −366 897 −110 0 0 0 0 0
−44 −110 −146 −110 425 0 0 0 0 0

0 0 0 0 0 425 −110 −146 −110 −44
0 0 0 0 0 −110 897 −366 −275 −110
0 0 0 0 0 −146 −366 1074 −366 −146
0 0 0 0 0 −110 −275 −366 897 −110
0 0 0 0 0 −44 −110 −146 −110 425


(C.27)

The mean distance convergence as a function of the number of experimental series is shown
in the following figure

3This second matrix is the average of the covariance matrices related to the sole contribution of the
quantum projection noise for the same experiments.
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Figure C.2: Distance between the average of the matrices corrected for both atom number and
bipartition noises to the expected correlation matrix4. The asymptotic value depends on the number
of shots per series. The uncorrected distance is ≃ 80000, to be compared to the values shown here

(150,20,10): the scheme works quite well.

In conclusion, the partial covariance scheme works quite well when it comes to the correction
of constant correlation noises.

4Which is different from the correction of the average of the noisy matrices.
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D Numerical simulations of dissipative
dipolar dynamics

Debugging is twice as hard as writing the code in the first place. Therefore, if you
write the code as cleverly as possible, you are, by definition, not smart enough to
debug it.

– Brian W. Kernighan

In this appendix we investigate atomic losses’ impact on the statistical distributions of the
Zeeman populations. We compute the exact evolution of a system of 8 singlons and 4
doublons, the four of which are lost throughout the dynamics. Thankfully, the algorithm
used to do so was not written as cleverly as possible, which made it debuggable.

D.1 System and assumptions

We simulate the dissipative dipolar interactions unfurling in a 2×6 rectangular plaquette,
composed of eight singlons and 4 doublons. This system is represented in D.1

Figure D.1: The system is composed of 4 doublons and 8 singlons. They form a rectangular lattice

Assumptions

� The magnetic field runs along one of the lattice’s ”crystallographic” axes: this is not
true in the actual experiment in which the magnetic field forms an ≈ 19◦ angle with
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one of the axes. We believe that this choice does not have any significant impact on
the qualitative results of the simulations, on the other hand, it allows for faster and
more efficient computations.

� The range of the interactions is limited: atoms only interact with the closest and
second closest entities.

� The doublons are treated as spin 6 particles, the spin degree of freedom is constrained
to the J=6 manifold.

� The singlons are initialized in the |S = 3,ms = 2〉 whereas the doublons are initialized
in |S = 6,ms = 4〉 state. In the real system the atoms are prepared in the 0 magnetiza-
tion manifold, the dimension of the Hilbert space relevant to this preparation entails
prohibitively expensive calculations. The dimension of the chosen Hilbert space is
D=11694943.

D.2 Simulation’s principles

D.2.1 Master equation

The algorithm used to compute the dissipative dynamics of our system makes intensive use
of the dimensional reduction principles underlined in section D.2.3, it also adapts known
quantum trajectories or quantum jumps methods developed in the early nineties in the field
of quantum optics to the problem at hand [81][82][83].
The main difference between these works and the results presented below being the nature
of the dissipative process investigated, here we are interested in particle losses rather than
spontaneous emission induced decoherence.
The main advantage of such methods is that one needs not evolve the whole density matrix
ρ of the system that is considered but rather a statistically significant set of wavefunctions
|Ψk〉 according to the protocol detailed below.
Following [84][85], we suppose that the dissipative dynamics of our system are given by the
general
master equation:

d ρ̂

d t
=− i

ħ
[
Ĥdd , ρ̂

]− 1

2

∑
i

(
L̂†

i L̂i ρ̂+ ρ̂L̂†
i L̂i −2L̂i ρ̂L̂†

i

)
(D.1)

Where

� ρ̂ is the density matrix of the system under consideration

� Ĥdd is the dipolar interaction Hamiltonian, for two particles it is written:

Ĥdd ,12 = ĤI si ng ,12 + Ĥexchang e,12

=
µ0(1−3cosθ2

B⃗ ,1⃗2
)

4πr 3
12

(
gsµB

)2
(
Ŝ1z Ŝ2z − 1

4

(
Ŝ1+Ŝ2−+ Ŝ1−Ŝ2+

))

=χ
1−3cosθ2

B⃗ ,1⃗2( r12
a

)3

(
Ŝ1z Ŝ2z − 1

4

(
Ŝ1+Ŝ2−+ Ŝ1−Ŝ2+

))
(D.2)

� The i index runs over doubly occupied sites

� The Ŝi operators are dimensionless spin operators
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� L̂i describes two body inelastic collisions leading to the loss of the doublonic particle
in site i at rate γ, by coupling to any of the unbound states of the continuum. These
operators will be called Lindblad or jump operators.

The derivation of this equation is based on a series of assumptions (see [84]) notably the
assumption that the environment is Markovian, that is that the time during which internal
correlations exist within the environment is much smaller than the system-environment
interaction time scales.

D.2.2 Wavefunction evolution protocol

Preliminary definitions

Consider the lattice model represented in D.1, we associate number operators n̂i to each
site and devise annihilation and creation operators âi , â†

i
1 such as:

âi |n1, ...,ni , ...nk〉 =
p

ni |n1...,ni −1, ...nk〉
â†

i |n1, ...,ni ...,nk〉 =
√

ni +1 |n1, ...,ni +1, ...,nk〉
(D.3)

In this framework, the loss operators L̂i are given by

L̂i =p
γâ2

i (D.4)

Since these can only be applied to doubly occupied sites, we have:

L̂†
i L̂i |Ψ〉 = 2γ |Ψ〉 (D.5)

Finally, we define the jump total probability 2

δp =∑
i
δpi (D.6)

where:

� δpi = 〈Ψ(t )| L̂†
i L̂i |Ψ(t )〉δt relates to the probability of loosing doublon i within3 δt

Evolution of a single wavefunction Ψ

The evolution of the single wavefunction Ψ is in fact divided in a series of discrete time
steps, in each step we consider a randomly generated number ϵ ∈ [0,1] such that if :

� ϵ> δp, the state |Ψ(t )〉 evolves continuously with the effective Hamiltonian

Ĥeff = Ĥdd − iħ
2

∑
i

L̂†
i L̂i (D.7)

1In the actual algorithm, this approach is generalized to all spin states accessible to the atoms
2Numerically speaking, δp is calibrated so that all doublons be lost in 20 ms on average, therefore

mimicking experimental observations. Actually for the results presented below, the average loss time for the
first doublon is 2 ms, the second one is 5.6 ms, the third one is 11.7 ms, the last one is 20.11 ms

3δt which represents the time step of the simulations must be chosen so that δp ≪ 1 for each time step
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� ϵ≤ δp, the state performs a so-called jump across the L̂i channel. The probability of

this channel being chosen is Pi = δpi

δp , in this case we have

|Ψ(t +δt )〉 = L̂i |Ψ(t )〉√
δpi /δt

(D.8)

The first alternative leads to

|Ψ(t +δt )〉 = 1√
1−δp

(
1− i

ħ Ĥeffδt

)
|Ψ(t )〉 (D.9)

Developing |Ψ(t )〉 in the orthogonal basis of pure Zeeman states |α〉4 we get

|Ψ(t )〉 =∑
α
α(t ) |α〉 (D.10)

And D.9 becomes

∑
α
α(t +d t ) |α〉 = 1√

1−δp

(
1− i

ħ

(∑
β,β′

hβ,β′

d

∣∣β〉〈
β′∣∣− iħ

2

∑
i

2γ
∑
β

∣∣β〉〈
β
∣∣)δt

)∑
α
α(t ) |α〉

= 1√
1−δp

(∑
α
α(t ) |α〉− i

ħ

(∑
β,α

α(t )hβ,α
d

∣∣β〉− iħ
2

∑
i

2γα(t )
∑
α

|α〉
)
δt

) (D.11)

Projecting on |α〉

α(t +d t ) = 1√
1−δp

(
α(t )− i

ħ

(∑
α′
α′(t )hα,α′

d − iħ
2

∑
i

2γα(t )

)
δt

)

= 1√
1−δp

(
α(t )

(
1−∑

i
γδt

)
− i

ħ
∑
α′
α′(t )hα,α′

d δt

) (D.12)

Equation D.12: Weight evolution equation

which can be rewritten

(
with h̃α,α′

d ≡ hα,α′
d
χ and δT = χ

ħδt = 17.73δt ↔ δt = 0.0564δT

)

α(t +d t ) = 1√
1−δp

(
α(t )

(
1−∑

i
γδt

)
− iχ

ħ
∑
α′
α′(t )h̃α,α′

d δt

)

= 1√
1−δp

(
α(t )

(
1−∑

i

γħ
χ
δT

)
− i

∑
α′
α′(t )h̃α,α′

d δT

) (D.13)

4Pure Zeeman states are states where each no atom have well defined spin momenta numbers, for two
chromium atoms |ms =−3,ms = 2〉 is a pure Zeeman state whereas |ms =−3,ms = 2〉+ |ms = 3,ms = 1〉 is not.
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constant value unit
ħ 1.055×10−34 J.s
gs 2.002
µB 9.274×10−24 J.T−1

µ0 4π×10−7 T.m.A−1

a 264×10−9 m

χ= µ0

4π
(gsµb)2

a3 1.86975×10−33 J
χ
ħ = µ0

4π
(gsµb)2

ħa3 17.73 s−1

γ 20 s−1

Table D.1: Some constants, some values and some units

On the weight evolution equation

1. Eq. D.12 can be interpreted as such : the weight of the node/state α in Eq. D.10 at
time t +d t depends on its weight at time t and the weights/couplings of the adjacent
states, that is those pure Zeeman states which can be reached through a single two-
particle exchange interaction (hα,α′

d ̸= 0). This is very reminiscent of the way heat
diffuses in a graph, the main difference being that the Hamiltonian couplings are
complex (eigenstate evolve with an oscillating phase instead of decaying to 0 when
t →∞). The algorithm used to compute the evolution of single wavefunctions is based
on this graph-like vision of the dipolar evolution.

2. The 1p
1−δp

prefactor ensures the normalization of the wavefunction, keeping in mind

that the effective Hamiltonian Ĥeff is non unitary

3. The mere eventuality of a dissipative phenomenon can impact the system, indeed, as
can be seen in Eq.. D.12, The γ factor contributes to the weight evolution equation
even when losses do not in fact occur. This effect which has been observed experi-
mentally is illustrated in sec. D.3.1
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Figure D.2: Normalized spin populations time evolution for a single quantum trajectory, the small
bumps correspond to loss events.

Evolution of the complete density matrix

The full density matrix at time t is obtained by averaging the above procedure up to time
t on a sufficient number of trials Nt .

ρ̂(t ) ≃ 1

Nt

Nt∑
k

|Ψk (t ))〉〈Ψk (t )| −→
Nt→∞

ρ̂(t ) (D.14)

The main advantage of this method proceeds from the fact that, in practice, convergence
of the observables of interest is obtained for Nt (see D.2.4 ), therefore Nt D which is the
number of necessary runs is greatly inferior to D2 ≃ (12×106)2, that is, the cost of evolving
the whole density matrix ρ.



133

Figure D.3: Many trajectories must be computed for the convergence of the statistical averaging

Computation of observables’ quantum expectation values

All other observables are computed in the same way, that is statistical averaging :

〈Â(t )〉 ≃ 1

Nt

Nt∑
k

〈Ψk (t ))| Â |Ψk (t )〉 (D.15)
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Algorithmic scheme

Figure D.4: The algorithmic scheme: The system is the one represented in D.1, the initial state
is symmetric: this is important for the dimensional reduction process, as in this case geometrically
symmetric nodes are equivalent, that is, they share the same weight history. The loss sequences
are then computed according to the loss rates found in [62] (p.86) and making intensive use of the
symmetries found in the previous step. Next, all relevant Lindbladians are computed, these of course
have varying dimensions depending on the number of particles, and the magnetization at time t .
Using these Lindbladians, we compute ∼ 175 trajectories thanks to which we compute expectation

values of all interesting observables through time see Eq. D.15



135

D.2.3 On the use of symmetries

The dimension of the chosen Hilbert space specific to the initial state described in Sec. D.1
is D ≃ 12×106. In practice however, we make use of the system’s symmetries to work on
relatively smaller spaces (≈ 3×106). These aspects are summarized in the figures below.

Figure D.5: The algorithm used to compute the wavefunction evolution uses graph-like structures.
Above is a schematic view of such structures. The graph’s nodes are pure Zeeman states (i.e. states
wherein each atom has a well defined spin projection along the quantization axis). Depending
on the system’s and the initial state’s symmetries some of these states become in fact equivalent,
put otherwise they share the same weight history throughout the evolution. Instead of computing
the weights of all nodes at time t , it is therefore enough to compute the weight associated to the
equivalence class to which they belong. Doing so efficiently requires the use of a more condensed

graph shown below.
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Figure D.6: It is computationally inefficient to even consider redundant nodes as is done when
using symmetric matrices for calculations. It is better to (almost) forget about them altogether. This
however requires the careful reexamination of the graph’s couplings or edges. Above is the essential
graph corresponding to the one shown in D.5, note that the graph is now directed which correspond to
a non hermitian Hamiltonian, this trick which makes for computationally more efficient algorithms
is based on the understanding of the node weight evolution equation: for example, when considering
the graph of Fig. D.5, we see that the weight of node A at time t+d t will be updated by considering
the weight of two C nodes (the essential one and the redundant one), in the second graph, it is
updated by considering the weight of one single node C but with twice the coupling which is better
in terms of computational speed and memory usage. The forgotten nodes are summoned back to

life once the computations are done with, to recover the exact properties of the system.

Figure D.7: Left: The full graph of a 2×2 square lattice with 4 singlons initialized in the ms = 2
state. This graph contains 35 states, by considering appropriate symmetries, it can be condensed
into a more efficient graph containing 19 states. The color gradient on the left hand graph represents
the diffusion of the initially point like weight distribution in the graph: as time passes, more states

are populated, the system explores the totality of the accessible magnetization manifold.
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D.2.4 Benchmark

To test the reliability of the algorithm we compute the evolution of populations when all
doublons are dropped (the system is then constituted of two isolated two by two square
lattices filled with singlons). We then compare this simulation with the results of straight-
forward diagonalization of an equivalent singlon filled two by two square lattice. As shown
below the results are in perfect agreement.

Figure D.8: Comparison between the normalized spin populations’ evolution predicted by straight
diagonalization of a 2×2 square lattice (dashed lines) with the results of the algorithm when all
doublons are dropped (thick lines). The dashed lines are hardly visible as they are hidden in the

thick ones: results are in perfect agreement.

We’ve also checked the convergence of some observables as a function of Nt , for populations
the results are shown below.
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Figure D.9: As the number of trajectories increases, the difference between statistical averages of
normalized populations becomes negligible.

D.3 Results

D.3.1 Impact of losses’ eventuality

As mentioned in the paragraph D.2.2, the mere eventuality of dissipative phenomena alters
the system’s state
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Figure D.10: Effect of losses’ eventuality on normalized populations. The two sets of curves
correspond to the normalized populations with and without the possibility of doublonic losses. The
two sets of curves are different even when no losses actually happen. This effect is induced in our
simulations by the γ factor in equation D.13. Intuitively, one can understand this effect by saying
that the absence of particles leaving the lattice gives us some degree of information on the system

that is considered, which in turn can affect its evolution.
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D.3.2 Impact of losses

On populations’ evolution

Figure D.11: Dashed: Evolution of populations when losses are taken into account. Thick: Evo-
lution of populations when losses are not permitted

Figure D.12: Left: Evolution of the normalized magnetization quantum expectation value through
time for 20,60,100,140 and 175 trajectories. Right: Evolution of the normalized magnetization

standard deviation value through time for 20,60,100,140 and 175 trajectories

Since the variance of the magnetization for the chosen initial state is 0, we can compare the
above shown dissipative contribution to the variance of the magnetization of the uncorre-
lated state state whose average populations are those of the correlated one. This comparison
is made in the Fig. D.13
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Figure D.13: Yellow: Evolution of the magnetization’s standard deviation uncorrelated state
whose average populations are those of the correlated one (i.e. the one computed using the algo-
rithm). Blue: Evolution of the normalized magnetization standard deviation value through time
for 175 trajectories. The effects of the losses remain small compared to the magnetization standard
deviation of the uncorrelated state which can be thought of as the standard quantum noise in this

case.

Conclusion: on the Cz correlator

From results of the previous sections we see that, at long times, the fractional populations
are not heavily affected by losses. The variance of the magnetization on the other hand
increases when losses are taken into account, as could have been expected considering
the loss induced variability of the post dynamic end state, this increase however remains
small when compared to the standard deviations that can be expected from completely
uncorrelated states and is anyway small compared to the precision of the experiment.
In general, we can expect the same type of effects for the actual system, keeping in mind
that the spatial segregation of doublons and singlons in the real system might further
mitigate the increase of the magnetization’s variance since in this case one can argue that
singlons are less affected by the departure of doublons from the lattice. As far as the
Cz =Var

(
Ŝz

)+N
(∑

m mam
)2 −N

∑
m m2am correlator is concerned (see Chap. 3), its time

evolution should not be much affected by the loss of doublons, and in any case the effects
of these losses should remain small compared to the standard quantum noise.
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Études des corrélations de spin dans un ensemble d’atomes dipolaires piégés dans un
réseau optique

Dans ce manuscrit nous étudions le développement de corrélations de spin entre atomes
de chrome piégés dans un réseau optique. Ce système se caractérise par le grand spin
(S=3) des atomes utilisés ainsi que la grande portée et l’anisotropie des interactions in-
teratomiques. Dans ce manuscrit sont décrites deux expériences dans lesquelles nous ob-
servons le développement de ces corrélations de spin. Ces deux expériences sont basées
sur la mesure répétée des populations Zeeman globales et l’estimation de leurs second mo-
ments statistiques. Les valeurs expérimentales de ces propriétés statistiques ne sont pas
uniquement dictées par la dynamique dipolaire, et elle sont en général impactées par de
nombreux autres phénomènes aléatoires (les fluctuations du signal total, la fluorescence
atomique etc...). Dans le deuxième chapitre de ce manuscrit, nous fournissons des méth-
odes de traitement statistique des données expérimentales qui permettent d’isoler la con-
tribution du bruit de projection quantique. Dans le troisième chapitre de ce manuscrit,
nous donnons la preuve expérimentale de la croissance de corrélations de spin dans notre
système au fur et à mesure de sa thermalisation. Les résultats de ce chapitre mettent en
évidence les possibilités nouvelles associées aux grands spins en termes de suivi des corréla-
tions. Dans le quatrième chapitre nous décrivons la mise en oeuvre d’une nouvelle méthode
de bipartition qui nous a permis d’examiner plus finement la structure des corrélations se
développant dans notre système et d’en démontrer la relative complexité. La croissance
de ces corrélations concorde avec les scénarios de thermalisation quantique communément
acceptés selon lesquels la thermalisation des systèmes isolés est induite par l’intrication des
différentes sous-parties du système.
Mots-clés : Corrélations, spin, réseau optique, interactions dipolaires, thermalisation quan-
tique

Studies of spin correlations in an ensemble of lattice trapped dipolar atoms

In this manuscript we study the development of spin correlations in an ensemble of
lattice trapped chromium atoms. This platform is characterized by the greater spin of its
constituents S = 3 and its long range anisotropic interactions. We report on two comple-
mentary experiments in which the growth of these correlations is tracked without relying on
state tomography like techniques. These experiments build on the repeated measurements
of global Zeeman populations and the estimation of these observables’ first and second
statistical moments. As it turns out, these statistical moments are affected by many phe-
nomena, some of which are of physical significance (dipolar dynamics), and some of which
are mostly irrelevant (e.g. total signal fluctuations or fluorescence noise) to our experimen-
tal endeavor. In the second chapter of this manuscript, we show how to extract the sole
contribution of the quantum projection noise from our data in a most rigorous way. In the
third chapter of this manuscript, we prove - experimentally - that spin correlations do in-
deed develop in our system as it thermalizes through dipole dipole interactions. The results
of this chapter illustrate the new possibilities offered by high spin particles S > 1/2 as far
as correlations tracking is involved. In the fourth chapter we probe at these correlations
using a novel bipartition method. We show that the correlations developing in our system
are more finely structured than what might, a priori, be inferred from the results of the
third chapter’s experiment. The growth of these correlations is reminiscent of quantum
thermalization scenarios, wherein isolated systems are predicted to thermalize through the
development of entanglement.
Key words : Correlations, spins, optical lattice, dipolar interactions, thermalization
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