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A B S T R A C T

Ensembles of large-spin S > 1/2 atoms offer richer potential applications in areas like
quantum computing, quantum simulations, and quantum magnetism as compared to
what is possible with effective spin-half S = 1/2 atoms. For instance, in quantum
simulations, large-spin atoms can be used to simulate high-spin models in optical lat-
tices or traps which are crucial for exploring strongly correlated systems and high Tc
superconductivity. Moreover, in quantum computing, atoms with large spins enable
more complex forms of quantum entanglement because of the multiple spin degrees
of freedom that can be simultaneously entangled. These systems can serve as qubits
with higher dimensions (qudits) and enable more complex quantum gate operations.
Furthermore, in quantum magnetism, atoms with large spins can exhibit SU(N) sym-
metry in their interactions (N being 2S + 1). In such systems, instead of traditional
spin-1/2 particles interacting through simple spin-exchange mechanisms, there can be
higher-rank spin interactions that can lead to richer quantum magnetism.

In this thesis, Firstly, I present experimental results for manipulating the nuclear
spins of ultracold atoms of 87Sr. To achieve spin state selectivity, a tensor light shift
is introduced into the ground state manifold. Then a two-photon Raman transition
between two spin states enables us to control the final spin state deterministically. We
can drive adiabatic Raman passages between the selected two spin states with a one-
way efficiency of 80%. These passages are efforts towards realizing the superexchange
interactions when are done inside optical lattices. In the future, this work will lead us
closer to investigating quantum magnetism.

Secondly, I show that we can perform Ramsey interferometry between the chosen
two spin states. Taking advantage of a large spin manifold of 87Sr, we developed two
interferometers that utilize a series of unitary rotations between the two chosen spin
states. These interferometers are run with four spin states. The first interferometer
measures the tensor light shift and the combination of vector light shift and linear
Zeeman splitting in one shot. The second interferometer is capable of measuring the
two collective atomic variables simultaneously. This interferometer can be used to
measure quantum correlations in one shot. In general, these interferometric ideas can
be applied to quantum computing and metrology.
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Abstract v

At last, I present our first result on the measurement of SU(N) symmetry within the
ground state of 87Sr with the help of Ramsey interferometry. There are two measure-
ments: one in the 1D lattice and the other in bulk gas. I observe the SU(N) asymmetry
to be smaller than the relative uncertainty 10−2, where the theoretical prediction is
about 10−9. Subsequently, I outline the immediate objectives to lower this uncertainty
by an order of magnitude. This measurement leads us towards a better understanding
of atoms with large spins that can exhibit SU(N) symmetry.
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1 I N T R O D U C T I O N

Significant progress has been made in quantum computing, metrology, and quantum
simulation because of the ability to manipulate atomic spins with great precision and
long coherences. Ultracold atoms offer a highly versatile platform to achieve these
goals. For instance, in metrology, ultracold atoms play a significant role in precise mea-
surements and tests for fundamental physics [Aidelsburger et al., 2022; Derevianko
and Katori, 2011; Giovanazzi, 2005]. When trapped in optical lattices, they provide
a tunable platform to study quantum many-body dynamics [Bloch et al., 2008; Bu-
luta and Nori, 2009; Gross and Bloch, 2017]. Ultracold atoms with SU(N) symmetry
offer a platform for higher-dimensional entanglement and enhanced quantum infor-
mation processing [Miguel A Cazalilla and Rey, 2014a; A. V. Gorshkov et al., 2010;
Taie, Takasu, Sugawa, Yamazaki, Tsujimoto, < f. R. Murakami, et al., 2010]. These

platforms are also useful for simulating magnetism under SU(N) symmetry, which
opens the door to the study of exotic quantum phases because N can be substantially
bigger than two [Aguado and Vidal, 2008; Greiner et al., 2002; Schulte et al., 2008].
These versatile properties bring ultracold atomic systems to the forefront of research
in quantum technologies and fundamental physics.

Quantum simulation

In recent years, interest in quantum simulation has been rapidly growing. One of
the reasons is that technologies required for coherent control of quantum systems are
reaching the stage of practical applicability. Quantum simulation is a valuable tool
throughout numerous active research fields in physics, chemistry, and even biology
[Georgescu et al., 2014; Kassal et al., 2011; Outeiral et al., 2021]. For instance, quan-
tum simulation offers a technique to address several challenging issues in condensed
matter physics, including high-Tc superconductivity and quantum magnetism. Other
potential applications of quantum simulation are in the areas including high-energy
physics, quantum chemistry, cosmology, nuclear physics, etc [Georgescu et al., 2014].
A quantum simulator can be built on several platforms like atoms in optical lattices,
trapped ions, atomic spins, superconducting circuits, spins in semiconductors, etc [Bu-
luta and Nori, 2009; Georgescu et al., 2014].
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introduction 2

Neutral atoms in optical lattices offer an excellent platform for building a quantum
simulator due to their tunability and minimal defects. One key experimental advan-
tage of optical lattices is that they allow for the manipulation of lattice geometry and
dimensionality by simply adjusting the intensity, frequency, or phase of the lasers
used for creating the optical potentials [Bloch et al., 2008; Georgescu et al., 2014;
Gross and Bloch, 2017]. Therefore, atoms in optical lattices have shown to be highly
flexible, providing control over key factors such as coupling between internal quan-
tum states, on-site interactions, and tunneling strength. Furthermore, both Bosonic
and Fermionic atoms can be used for quantum simulation in optical lattices.

There are various implementations of neutral atom-based quantum simulators in
different areas of physics. For instance, in condensed matter physics: Observation
of quantum phase transition from superfluid to Mott insulating phase [Greiner et
al., 2002], Simulating a chain of interacting quantum ising spins [Simon et al., 2011],
dynamics of Bloch oscillations in disordered lattice potential [Schulte et al., 2008], and
the also observation of Anderson localization [Billy et al., 2008]. In addition to these
experiments, there are theory models such as describing topological order [Aguado
and Vidal, 2008]. The applications of quantum simulators take us beyond condensed
matter physics, for example, in high energy physics: quantum simulation for lattice
gauge theories [Aidelsburger et al., 2022] and a proposal for quantum simulation of
Dirac-Weyl fermions using ultracold atoms in a 2D optical lattice [Lan et al., 2011]. In
cosmology: to study Hawking radiation [Giovanazzi, 2005].

Quantum computing

Several physical platforms can be utilized to build a quantum processor [Ladd et al.,
2010]. Among them, arrays of single neutral atoms manipulated by light beams appear
as a very powerful and scalable technology to manipulate quantum processors with
up to a few thousand qubits [Henriet et al., 2020]. The control achieved at the single-
particle level in optical trap arrays, while preserving the fundamental properties of
quantum matter such as coherence and entanglement makes these technologies prime
candidates for implementing disruptive computation paradigms. [Saffman, 2016].

Metrology

Ultracold atoms also play a crucial role in metrology, atom interferometry, and tests
of fundamental physics due to their precise controllability. They provide unmatched
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accuracy in atom interferometry and are a critical tool in probing the fundamental
tests for gravity [Canuel et al., 2018; Jeffrey B Fixler et al., 2007; Peters et al., 2001].
When employed in atomic clocks that have achieved unprecedented accuracy, reaching
fractional uncertainties at the 10−18 level [Derevianko and Katori, 2011], and the list
goes on.

Alkaline earth atoms (AEA)

Whether to build a quantum simulator, quantum computer, or a device for metro-
logical purposes, the central question is always coherence and entanglement. AEA
naturally have a long coherences due to their weak sensitivity to external magnetic
fields. This property arises because of the closed-shell electronic configuration in the
1S0 ground state, which is decoupled from external magnetic fields. Furthermore,
some of the fermionic species have a rich hyperfine structure and nuclear spin greater
than 1/2, which provides the possibility to entangle more than two quantum states.
Atoms like 87Sr allow for the encoding of higher-dimensional entangled states, which
can be used to simulate complex quantum systems.

One of the most appealing properties of AEA is an emergent SU(N) symmetry in
the nuclear spin degrees of freedom. They can be used to study many-body phenom-
ena characterized by the SU(N) group with N as large as 10 [Alexey Vyacheslavovich
Gorshkov et al., 2010]. For instance, the realization of the SU(6) Hubbard model by
loading a nuclear spin mixture of 173Yb atoms in a 3D lattice [Taie, Takasu, Sugawa,
Yamazaki, Tsujimoto, < f. R. Murakami, et al., 2010]. On top of this experiment, var-
ious theoretical studies involving quantum magnetism beyond SU(2) symmetry have
been done [Miguel A Cazalilla, A. Ho, et al., 2009; Hermele et al., 2011].

87Sr, with the largest nuclear spin, I = 9/2, in the atomic ground state 1S0, is an
ideal candidate for the study of magnetism in enlarged SU(N) symmetry. Further-
more, the atom has unique atomic properties like narrow linewidth 1S0 ↔ 3P0 and
insensitivity to external perturbations due to the closed shell, which make them ideal
for the realization of ultra-precise atomic clocks. Fermionic AEA, such as Sr or Yb, are
used in state-of-the-art optical atomic clocks [Derevianko and Katori, 2011].

Strontium 87

87Sr atoms are widely used in cold atom experiments due to their unique electronic
structure and properties such as narrow optical transitions, and long-lived metastable
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states. The first quantum degenerate gas of 87Sr was realised [DeSalvo et al., 2010].
Since then, the strontium clocks became popular beating the precision of previous
clocks [Baillard et al., 2008; Blatt et al., 2008; Martin M Boyd et al., 2007; Le Targat
et al., 2006]. These clocks have already surpassed the accuracy of the Cs standard with
a fractional uncertainty of 10−18 [Andrew D Ludlow, Zelevinsky, et al., 2008]. People
have explored relativistic time dilation by comparing 87Sr clocks at different heights,
testing general relativity with unprecedented precision [Lisdat et al., 2016].

Furthermore, in interferometry, 87Sr atom interferometers are used for precise grav-
itational measurements [Poli et al., 2011]. Two-dimensional superfluidity and phase
coherence in 87Sr optical lattices are observed, providing insights into quantum phase
transitions [Büchler et al., 2007].

In our experiment, we utilize 7.4 kHz narrow intercombination line 1S0↔3P1 of
87Sr. The hyperfine splitting of the state 3P1 is several orders of magnitude larger than
the linewidth of this line. Therefore, this transition offers ideal conditions for realizing
spin-orbit coupling schemes with less spontaneous emission [Miguel A Cazalilla and
Rey, 2014a]. The fine structure splitting caused by spin-orbit coupling allows precise
control over the energy levels in the ground state manifold 1S0. It contributes to the
stability of the optical transitions used in precision measurement-related experiments.

Our experiment deals with ultracold gases of 87Sr. The first path of the experi-
ment is to explore collective phenomena such as quantum magnetism with 87Sr atoms
loaded in the optical lattices. In particular, the geometry of the spin-independent lat-
tice in our experiment is designed to realize the 2D Fermi-Hubbard model [Das et al.,
2024] with the atoms of 87Sr with enlarged SU(N) symmetry. Using a spin-dependent
lattice [André Heinz et al., 2020] on top of the spin-independent one, we will be able to
write the spin texture realizing Néel spin order [Mazurenko et al., 2017]. By adjusting
the depth of the spin-independent lattice the dynamics of the spins interactions can
be tuned. It will be possible to slowly approach the regime where many-body physics
is driven by super-exchange interactions, within a spin-independent lattice. These in-
teractions that can result in the squeezing of the alternate magnetization [Comparin
et al., 2022] that can be probed by the same spin-dependent lattice.

In addition, the second direction of the experiment is to realize physics in the bulk
gases. Taking advantage of the large spin symmetry of strontium atoms, there is the
possibility to generate ideas based on high dimensional interferometry. These schemes
are useful in building a quantum sensor and quantum processor.
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Therefore, my PhD thesis is divided roughly into two sections. Initially, I set up a
path to investigate many-body physics in optical lattices. Second, I make use of 87Sr’s
large spin (N=2I+1=10) symmetry to construct two interferometric schemes and a test
to measure the SU(N) symmetry.

thesis overview

The first chapter highlights the experimental results for coherent spin manipulation
in the ground state manifold of 87Sr. At the beginning of the chapter, I described
the theoretical calculation of spin-dependent light shifts associated with the narrow
intercombination line. Using spin-dependent light shifts, we can manipulate the nu-
clear spin states with low spontaneous emission. To accomplish this, we lift the de-
generacy within the 1S0 ground state manifold. Then, we isolate and manipulate a
system of two nuclear spin states from the entire manifold. Our technique relies on a
two-photon Raman transition. I demonstrate an experimental result for an adiabatic
scheme to selectively and coherently manipulate the two selected nuclear spin states
of 87Sr. We achieved adiabatic passages with a one-way efficiency of approximately
80%, restricted by the spontaneous emission rate. With ongoing improvements in the
experimental setup, the efficiency is expected to reach 97%. These results are pre-
sented in bulk gases. Then, I outline the configuration of a 3D lattice to achieve this
coherent manipulation locally on each alternative lattice site. In the future, this spin
manipulation in the lattice will be used to write spin textures and study spin-spin
interactions.

Furthermore, I show the coherent Rabi oscillations between the nuclear spin states
that differ by ∆mF = 1. I present the experimental results for Rabi oscillations between
three pairs of nuclear spin states. Then, I discuss the coherence associated with these
Rabi oscillations. I improved the coherence time from 5 ms to 300 ms approximately by
changing the waist of the beam that drives the two-photon Raman transition. After the
improvement, we observe the Rabi oscillations with a quality factor Q ∼ 100. Finally, I
present a scheme to achieve coherent coupling of the nuclear spin states that differ by
∆mF = 2.

In the second chapter, I present the result of Ramsey interferometry within two
isolated nuclear spin states. Using a Ramsey interferometer, I show the measurement
of the coherence time of the qubit state associated with the nuclear spin states. First,
in the presence of an external magnetic field and the light used to generate the spin-
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dependent light shift. We observed a coherence time of roughly 50 ms limited by the
variations in the vector light shift from the light. Second, which is only in the presence
of the external magnetic field the coherence time is observed to be comparable to the
lifetime of the Fermi gas which is of the order of a few seconds.

Next in this chapter, I present two interferometric schemes involving four nuclear
spin states. In these schemes, a series of two spin-state unitary operations are applied
within the four spin-state manifolds. The first interferometric scheme measures the
tensor light shift and the combination of vector light shift and linear Zeeman splitting
in one shot. This type of interferometer can be used to sense multiple fields at once.
The second interferometric scheme is capable of measuring the two or more collective
atomic variables simultaneously. This interferometer can be used to measure quantum
correlations and performs tomography in one shot. Lastly, I highlight the different
types of noises that appears as uncertainty in our interferometric results.

In the last chapter, I present our first result on the measurement of SU(N) symme-
try within the ground state of 87Sr with the help of Ramsey interferometry. There
are two measurements: one in the 1D lattice and the other in bulk gas. I observe no
SU(N) asymmetry with a fractional uncertainty of 10−2, where the theoretical predic-
tion is about 10−9. Subsequently, I outline the immediate objectives to increase this
uncertainty by an order of magnitude, which is 10−3.



2 M A N I P U L AT I O N O F N U C L E A R S P I N
S TAT E S O F 8 7 S r

F
ermionic 87Sr has a large nuclear spin I=9/2, which offers a platform to
work with ten (2I+1) nuclear spin states. External magnetic fields have a
very weak coupling to these ten nuclear spin states because the ground
state 1S0 of Fermionic 87Sr has a closed electronic structure. Therefore,
it is impractical to probe and manipulate these nuclear spin states in

the ground manifold with external magnetic fields. On the other hand, for fermionic
87Sr, the excited states with J ̸= 0 couples the total momentum Jwith the large nuclear
spin I=9/2 such that the orbital degrees of freedom are mixed and entangled with the
spin degrees of freedom. For instance, the excited state 3P1 with angular momentum
J = 1 is split into three hyperfine states F = 11/2, 9/2, 7/2. These hyperfine states are
separated over ∼ 2.6GHz, which makes them highly resolved compared to the line
width of the optical transition Γ/2π = 7.4 kHz. Due to this property of the 87Sr atom,
the polarizability associated with this intercombination line can be highly sensitive to
the nuclear spin states in the ground manifold, with low spontaneous emission.

The spin-dependence of polarizability allows us to engineer spin-dependent light
shifts that can be used for resolving, manipulating, and probing the nuclear spins [C.
Shi et al., 2015]. Manipulation of nuclear spins offers a platform for studying quantum
many-body phenomena in optical lattices with an emergent SU(N) symmetry [M A
Cazalilla et al., 2009; Taie, Yamazaki, et al., 2012]. It can be achieved in alkaline earth
metals like strontium and ytterbium. Particularly in the case of strontium, the N can
be up to 10. Moreover, the Fermi mixture of alkaline earth metals opens the door to
discovering novel quantum phases of matter [Tey et al., 2010]. Measurement of these
phenomena requires probing nuclear spins. One such scheme for spin-dependent
imaging has been demonstrated for strontium [Stellmer et al., 2011a].

In this chapter, I will first recall a brief introduction to the estimation of these spin-
dependent light shifts and the scattering rate associated with them. A detailed ver-
sion of the mathematical calculations is presented in the thesis [Litvinov, 2023]. I
will demonstrate that our Raman spectroscopic scheme allows us to measure these

7



2.1 spin dependent light shifts 8

spin-dependent light shifts in the experiment. Then, I will present the experimental
measurement of the scattering rate associated with spin-dependent light shifts, which
is approximately three times higher than the expected value. This is explained based
on amplified spontaneous emission which is being solved by the filtering cavity.

In our experimental setup, we use an optical beam that I will call beam 1 to lift the
degeneracy of the ground manifold quadratically. Combined with beam 1, a second
beam beam 2 is used to select and couple two spin states coherently and deterministi-
cally via a two-photon Raman process. I will show how we isolate a two-level system
of two spin states from an entire ground state manifold to drive coherent Rabi oscil-
lations between them. This is achieved by minimizing the ratio of the Rabi couplings
associated with beam 2 and beam 1. We achieved the Rabi oscillations between the spin
states that differ by ∆mF = 1 and ∆mF = 2. With our scheme, we can manipulate up
to 10 spin states coherently across the entire 1S0 manifold. In addition, it is possible to
carry out adiabatic passages with spin selectivity across 10 different spin states with
80 % one-way efficiency. Finally, I will provide an outlook for a scheme for the spatial
selectivity of the spin-dependent light shifts.

2.1 spin dependent light shifts

2.1.1 Tensor polarizability with intercombination line

In the presence of hyperfine structure, the AC Stark shift can depend on the spin
states, i.e. the Zeeman sub-levels. The calculation of this AC Stark follows straight
from the second-order perturbation theory. In this section, I will briefly describe the
light shift calculation that depends on the spin states, which I will refer to as |mF⟩.
Some references contain the calculation of atomic tensor polarizability for Rb and Sr
with experimental verification [M. Safronova and U. Safronova, 2011; C. Shi et al.,
2015; Steck, 2001]. Please refer to [Varshalovich et al., 1988] for the theory of angular
momentum, particularly spherical tensors.

Interaction Hamiltonian between an electric dipole atom d⃗ under the dipole approx-
imation and the monochromatic light E⃗ can be written as H = −d⃗.E⃗. Where the light
field can be described as E⃗ = 1

2 ϵ⃗|E|e
i(ωlt+ϕ) + cc. This monochromatic light has the

frequency νl = ωl/2π. Under an approximation where the wavelength of the light is
much larger than the typical size of the atom, the amplitude of the electric field felt by
the atom is constant over the spacial size of the atom. Starting from the second-order
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perturbation theory, we can calculate the light shift produced by the laser atom inter-
action Hamiltonian described above. The result is called AC stark shift and given by
the general expression.

∆E = −
1

4
α|E|2 (2.1.1)

where α = α(αs,αv,αt) is the polarizablity of the atom. This polarizability has a
scalar part αs which is independent of mF, a vector αv part that has a linear depen-
dence on mF and a tensor αt component that has a quadratic dependence on mF. The
state of an atom in hyperfine basis is described by the quantum numbers |n, J, F,m⟩,
where symbols have their usual meanings. In this chapter for the manipulation of
nuclear spins, we will be addressing the intercombination line (5S2)1S0 ↔ (5S5P)3P1.
There is no change in the value of the principal quantum number n for this transition.
Therefore, the state of the atom can be fully described by the quantum numbers |F,m⟩,
where F=J+I. Overall, the AC Stark shift which leads to π transition only is given by
[M. Safronova, U. Safronova, and Porsev, 2013]:

∆E = −
1

4
E⃗∗π · E⃗π

∑
F′

|
〈
F,m

∣∣∣d⃗ · ϵ⃗π∣∣∣ F′,m〉 |2
 h∆F,F′

(2.1.2)

Where ∆F,F′ is the energy difference between the states |F⟩ and |F′⟩. |F′⟩ is the excited
state. Furthermore, the effective two-photon Rabi coupling for these states for an
arbitrary polarization of the laser is given by:

 hΩeff = −
1

4
E⃗∗q2

· E⃗q1
×

∑
F′,q1,q2

〈
F,m+ q1 − q2

∣∣∣d⃗ · ϵ⃗q2

∣∣∣ F′,m+ q1

〉〈
F′,m+ q1

∣∣∣d⃗ · ϵ⃗q1

∣∣∣ F,m〉
 h∆F,F′

(2.1.3)

where (q1,q2) = (0,±1) = (π,±σ) depending upon the polarisation of the light.
Notice the conservation of angular momentum, the initial spin state |F,m⟩ coupled to
excited state |F′,m+ q1⟩ via polarization q1, similarly the excited state |F′,m+ q1⟩ is
coupled to another spin state in the ground manifold |F,m+ q1 − q2⟩ via polarization
q2.
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Figure 1: Left: Numerical estimation of spin-dependent tensor light shift when the laser fre-
quency scanned over the hyperfine structure of 3P1 state. The parameters in beam
1 such as laser power are kept at 4.5 mW with a waist of 320 µm felt by the
atoms. Right: For the same light shift, expected resonances between neighboring
|mF⟩ ↔ |mF+1⟩ spin states. On both the plots, black dashed lines represent the three
hyperfine resonances in 3P1 state. The color scheme represents different mF spin
states. It should be noted that the detuning of the laser from the excited state is in
GHz.

To summarise, we observe that there is spin dependence in the polarizability. The
light shift over the entire manifold m=2F+1 can be calculated using the equation 2.1.2.
The equation 2.1.3 gives the effective Rabi coupling between the spin state |F,m⟩ and
|F,m + q1 − q2⟩. The two equations are sufficient to calculate the matrix elements
for the Hamiltonian H for the second-order processes. Furthermore, the light shift
is quadratic. Therefore, we can select and isolate the two spin states from the entire
manifold of several spin states, as we shall see later in this chapter. Dipole matrix part〈
F,m1

∣∣∣D⃗ · ϵ⃗π
∣∣∣ F′,m2

〉
can be calculated with the help of dipole reduction methods

such as Wigner-Eckart theorem. Where m1 and m2 can be arbitrary. These matrix
elements depend upon the atomic properties only for a given polarization of light.
Upon solving the algebra, we can estimate the light shift and effective Rabi couplings
over the entire manifold.

The spin-dependent light shift in kHz for the intercombination line 1S0 ↔3 P1 for a
π polarized light is shown in the figure left 1. As the frequency of the light is scanned
over the hyperfine structure of the excited state 3P1, we can see the divergence of the
light shifts at the location of three hyperfine resonances F=11/2,9/2,7/2 respectively.
We also observe that all the spin states |mF⟩ experience from attractive to repulsive AC
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Stark shift, which makes this spin-dependent potential highly tunable. Furthermore,
based on the simulation (not shown here), light shifts for σ+ + σ− polarized light
were calculated. In this case, the lower values of Clebsch–Gordan (CG) coefficients
resulted in less resolved spin states. The energy difference between the two successive
|mF⟩ ↔ |mF+ 1⟩ spin states are plotted as a function ofωlaser−ω3P1

in the picture on
the right. Between F=11/2 and F=7/2 resonances, the transitions weakly depend upon
ωlaser, except at the resonance where they diverge. This results in a highly robust
selection of spin states over a wide frequency range compared to the linewidth Γ3P1

.
We notice that for the π polarized light, the spin states with high |mF⟩ are resolved
better, whereas the spin states with mF = ±1/2 are least resolved.

We now have calculated the light shift associated with the intercombination line.
For π polarized light and a given detuning ωlaser −ω3P1

, the light shifts are known
theoretically. The next step is to calculate the associated scattering rate.

2.1.2 Scattering rate associated with the intercombination line

Spontaneously emitted photons from an atom in the excited state 3P1 to the ground
state 1S0 possess random polarization. Because of this, the atom’s ground state man-
ifold experiences stochastic changes in its spin states, which disperse the spin states
over the |mF⟩, |mF+1⟩, |mF−1⟩ manifold (assuming the atom’s initial state was |mF⟩).
This redistribution of spin states results from the selection rules governing dipole
transitions, which allow changes in the magnetic quantum number mF by ±1 or 0,
depending on the polarization of the emitted photon. As a consequence, we lose the
control over spin selectivity. Therefore, it’s crucial to understand and quantify the
photon scattering rate. The imaginary part of the polarizability in the equation 2.1.3
directly corresponds to the photon scattering rate.

The left figure in 2 shows the scattering rate as the laser frequency is scanned over
the hyperfine structure of the excited state. As the laser frequency is close to F=9/2,
larger spin states |mF| experience maximum light shifts accompanied by a greater
scattering rate. While near F= 11/2 and F=7/2, smaller spin states |mF| are shifted
more with a greater scattering rate. The energy difference between two neighboring
spin states is compared to the mean scattering rate of the spin states to analyze the two
situations. The ratio of these lights shift between two neighboring spin states to the
mean scattering rate is plotted in the figure 2 right. We observe that the optimal ratio
occurs within the frequency range surrounding the resonance frequency for F=9/2,
typically at -0.4 GHz and 0.7 GHz. It also worth noticing that the larger the |mF|,
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Figure 2: The figure shows an estimation of the scattering rate for the intercombination line.
The frequency of the laser is scanned over the hyperfine structure in the excited state
3P1. The laser power in beam 1 is kept at 4.5 mW with a beam waist 324 µm and
polarization π. Left: Scattering rate in rad/sec for each spin state |mF⟩. Right: Light
shifts between neighboring spin states |mF⟩ ↔ |mF+1⟩ over the mean scattering rate
for each spin state. Different color of lines shows each spin states mF.

the better is the optimization for the light shift to scattering rate ratio. We will later
use this fact for various schemes for spin manipulation in this chapter. Since we can
characterize the spin-dependent light shifts and scattering rate associated with them,
we shall now move on to the experimental realization of the two quantities.

2.2 preparation for nuclear spin manipulation in the
ground state manifold

This section aims to experimentally show how we prepare for coherently manipulat-
ing two spin states within the ground state manifold. We want to achieve this goal
with minimum spontaneous emission. Therefore, we lock the laser responsible for
inducing spin-dependent light shift at the detuning of -600 MHz from the excited
state F=9/2, 3P1. Since the tensor light shifts are quadratic, we can isolate the two-
level system from the entire ground state manifold to engineer coherent processes like
spin-selective adiabatic passages and spin-selective Rabi oscillations.
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I will start this section by explaining the experimental setup we have designed to
achieve our objectives. With the help of the Raman resonance scheme, we identify
the resonances between spin states |mF⟩ ↔ |mF + 1⟩ quantifying the spin-dependent
light shifts. Then, I will compare the experimental results of the measurement of spin-
dependent light shifts with the theoretical estimation in the previous section. Finally,
We will measure the scattering rate associated with spin-dependent light shifts and
compare it with the expected value.

In our experiment, the oven’s temperature is set to 770 K, corresponding to an
outgoing with Boltzmann velocity distribution with a most probable axial velocity of
about v ∼ 500 m/s. This hot atomic vapor is optically collimated with 2D optical
molasses. Then, the axial flux of atoms is slowed with a 50 cm long Zeeman slower,
and the axial velocity of the atoms reaches from v ∼ 500 m/s to the capture velocity of
about 20 m/s of our broadband MOT.

The atoms are then captured in a 3D MOT, which is on the broad-band transition
1S0 ↔1 P1 at 461 nm and cooled down to a Doppler limit TD ∼ 1mK corresponding to
this transition. This transition is not cyclic, and atoms are continuously shelved from
the ground state into the state 3P2. The temperature of the atoms accumulated in 3P2

is approximately the Doppler temperature of the broad-band MOT, which is too hot
to be directly loaded in the optical dipole trap for the next stage of optical cooling.
To achieve optical cooling effectively, we employ a second narrow MOT stage, which
necessitates that the atoms are in the ground state. Therefore, we use the optical
transition 3P2 ↔ 5s6d3D2 at 403 nm to repump atoms back in the ground state with
a two-photon radiative decay through 3P1.

The second optical cooling stage in our experiment is associated with the 7.4 kHz
intercombination line 1S0 ↔3 P1 at 689 nm. The laser used for this cooling has
a spectrum that is as narrow as 1 kHz which is sufficient for the targeted 7.4 kHz
linewidth. In the final narrow MOT stage, the bulk gas of 87Sr extends over nearly
600 µm with 6 million atoms at T ∼ 3 µK.

The 1070 nm laser beams used to create an optical dipole trap are activated right
after the narrow MOT stage. The atoms are attracted by the dipole trap of depth nearly
50 µK. The gas is finally cooled down to Fermi degeneracy, with forced evaporation
inside the dipole trap. A typical forced evaporation runs over 8 to 10 seconds, and
the gas reaches degenerate regime T ⩽ 0.5 TF with approximately 4000 atoms per spin
state. Throughout this thesis, the experiments are done on this Fermi gas.
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Figure 3: Typical parameters at each experimental stage for producing the Fermi gas.

2.2.1 Experimental setup for spin dependent light shifts

The Moglabs laser [MOGLabs, n.d.] generates the spin-dependent tensor light shift.
The red laser [Radiant Dyes Laser & Accessories GmbH, n.d.], which is utilized for
laser cooling at the narrow MOT stage, is beat-locked with the Moglabs. We can
beat-lock the Moglabs laser with minimal fluctuations because the red laser is ultra-
stable. Considering the bandwidth of locking electronics, it’s possible to tune the beat
frequency generated by the two lasers within a 1GHz frequency window around the
F = 9/2 resonance in the excited 3P1 state. Therefore, we can lock the laser at the
detuning of -600 MHz from the excited state F=9/2, 3P1.

The optical setup used for creating spin-dependent light shifts on the atoms is il-
lustrated in figure 4. In the figure, a PBS is used to split the main optical beam into
two beams. This setup includes two independent optical beams controlled by separate
AOMs. The first beam, which controls spin-dependent light shifts in the ground state
1S0, will be named beam 1 in this thesis. The second beam is orthogonal to beam 1 in
terms of polarization and will be called beam 2. The RF drive of the two AOMs that
control the frequency of two beams is from the same direct digital synthesizer (DDS),
which makes the two beams’ phase coherent. The two beams combined through a PBS
before being injected inside the same optical fiber. Injecting both beams in the same
optical fiber aligns them simultaneously on the atoms. Since both beams come to the
experimental cell from the same optical fiber, both beams are naturally superimposed.
The two distinct polarizations cannot be maintained as precisely as they would be if
the optical fiber contained a single polarization, which is a disadvantage of this setup.
But our scheme is robust enough to drive coherent Rabi oscillations with sufficiently
long coherence time as I will explain later in the chapter 2.5.2.
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Figure 4: The above figure shows an optical setup designed to create spin-dependent light
shifts and to facilitate various processes that are selective to spins. The master laser
of this setup is beat-locked with the red laser used for laser cooling. The master
laser’s optical beam is split into two beams using a PBS. Each of these two beams
is controlled independently using two acousto-optical modulators. Throughout the
chapter, I will refer to these two beams as beam 1 and beam 2. Before injecting into
the same fiber, these two beams again combined with orthogonal polarization.

Furthermore, in all our experiments, the quantization axis is set parallel to the
direction of the electric field wavevector of beam 1 meaning the B⃗||E⃗, where B⃗ is the
external magnetic field. Therefore, the polarization of beam 1 is π. The polarization of
beam 2 is σ+ + σ− in this particular frame. The waist of the two beams at the atoms
is measured to be 320± 5µm. The experimental configuration that will be utilized for
the coherent manipulation of the spins is now complete. Now, we are ready to drive
a two-photon process with this scheme of two orthogonal beams. One can think of
this process as the absorption of a π photon in beam 1 and emission of a σ± photon in
beam 2 and vice versa.

2.2.2 Resonance spectroscopy of tensor light shifts

Resonance spectroscopy allows us to measure spin-dependent light shifts and identify
all the ten resonancesmF ′s in the ground state manifold 1S0. I will show three of these
resonances |− 5/2⟩ ↔ |− 7/2⟩, |− 5/2⟩ ↔ |− 3/2⟩, |− 7/2⟩ ↔ |− 9/2⟩ and compare them
with the theoretical predictions. For this spectroscopy, we prepare Fermi gas initially
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Figure 5: The figure shows experimental data observed from the Raman resonance spec-
troscopy scheme. Both the beams have the detuning ∆ = −600MHz to the ex-
cited hyperfine state F = 9/2,3 P1. The optical powers in the {beam 1, beam 2} are
{4.5mW, 0.8µW} respectively with the same beam waist of 320 ± 5µm. Up: blue
dots represent the population of atoms in spin state | − 3/2⟩ for the resonance
|− 3/2⟩ ↔ |− 5/2⟩, and the red dots represent the population of atoms in spin state
|− 7/2⟩ for the resonance |− 7/2⟩ ↔ |− 5/2⟩. The graph displays the population of
the target spin state for both resonances. Bottom left: green dots represent the pop-
ulation of atoms in the spin state |− 7/2⟩ for the resonance |− 7/2⟩ ↔ |− 9/2⟩. The
graph displays the population in the initial spin state. Bottom right: Figure repre-
senting the measured value of the resonances confirming the quadratic degeneracy
lift. The figure is extended to cover the entire ground state manifold of 87Sr.

in the state mF = |− 5/2⟩ for all these resonances. In principle, we can choose any
spin state as an initial state. An optical pumping sequence produces a mixture of a
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desired spin state |mF⟩ and | − 9/2⟩. Subsequently, an on-resonance pulse removes
|− 9/2⟩ from the trap by radiation pressure. The whole process is described in detail
here [Litvinov, 2023].

After the preparation of Fermi gas, the magnetic field is aligned adiabatically along
the direction of the electric field vector of the beam 1. Then beam 1 is turned on
adiabatically to lift the degeneracy in the ground manifold quadratically. The intensity
of this beam is locked to minimize fluctuations in intensity appearing as fluctuations
in light shifts. At the locking point, the power of beam 1 is set to approximately 4.5
mW, and power in beam 1 may vary a bit depending on the day the experiment was
performed. Afterward, the beam 2 turned on with a 10-millisecond square pulse. The
power of beam 2 is kept at 0.8 µW to reduce the power broadening of the resonances.
I chose 10 ms of pulse duration such that Fourier broadening of the resonance due to
pulse time is less than the light shifts. The pulse time of beam 2 cannot be arbitrarily
long as the spontaneous emission from beam 1 can depolarize the Fermi gas. The
frequency of beam 2 is tuned by the driving AOM to make the spectrum, which shows
the resonances between states |mF⟩ ↔ |mF± 1⟩. Depending on our choice, the spin-
dependent momentum transfer technique [Bataille et al., 2020] can measure the initial
spin state or target.

In order to do the spectroscopy, the frequency of beam 2 was scanned within a few
kHz range detuned from beam 1. Depending upon the detuning two resonances can
be found | − 5/2⟩ ↔ | − 3/2⟩ and | − 5/2⟩ ↔ | − 7/2⟩. For our scheme that is with
(π− σ) configuration of the two beams, I look for the resonance in the neighboring
states |mF⟩ ↔ |mF±1⟩ only, I repeat this experiment with the initial state mF = |− 7/2⟩
to find the third resonance between |− 7/2⟩ ↔ |− 9/2⟩. The populations in each spin
state were fitted with the formula for the Rabi cycle in a two-level system to find
the resonances. A detail about Rabi oscillations can be found in section 2.5.1. One
important remark here is that the Rabi frequency is smaller than the width of the
resonance. Hence, you can see Rabi cycles inside the resonance curves. In order to
measure the resonances, the data is fitted with the eqaution:

P(t)mF→mF±1
=

Ω2
eff

Ω2
eff + (δ− δ0)

2
sin2


√
Ω2

eff + (δ− δ0)
2t

2

 (2.2.1)

This equation reads Ωeff = Ω1Ω2/2∆ and ω1 −ω2 = δ. (Ω,ω)1,2 = are Rabi
coupling and optical beam frequency for each beam respectively. ∆ is the detuning to
the excited state. Therefore, Ωeff is the effective Rabi coupling. Expected resonances
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occur when δ is equal to the respective energy difference δ0 between the spin states
|mF⟩ ↔ |mF±1⟩.

Figure 5 shows the result of the experiment. In the figure, blue dots represent the
population in the spin state |− 3/2⟩ for the resonance |− 3/2⟩ ↔ |− 5/2⟩. Similarly for
the resonance |− 7/2⟩ ↔ |− 5/2⟩, population in the spin state |− 7/2⟩ is measured. For
both the resonances the centre is found at {|− 3/2⟩ ↔ |− 5/2⟩, |− 7/2⟩ ↔ |− 5/2⟩} =
{1.8± 0.1, 2.3± 0.1} kHz. The figure on the bottom right shows the measurement of
the resonance |− 7/2⟩ ↔ |− 9/2⟩. The population in the initial spin state |− 7/2⟩ is
measured. Hence, we see the depletion of the population. Furthermore, we observe
that the resonance is not symmetric. The asymmetry arises because spin state |− 7/2⟩
starts to resonate with the spin state |− 5/2⟩ on the lower side of the frequency scan of
this plot. However, the central peak of the oscillation is still symmetric for extracting
information about the resonance center. After fitting this resonance, we find the center
at 2.7± 0.1 kHz.

These overall shifts in the spin states come from the light shift created by the laser
and the linear Zeeman shift created by the external magnetic field during spectroscopy.
The linear Zeeman shift at this stage is 950± 50 Hz which comes from external mag-
netic field of 5 Gauss (Zeeman coupling constant of ∼200 Hz/G). I did a theoretical
estimation based on the equation 2.1.3 for the light shifts with the beam waist mea-
surement of 320± 5 µm. The simulation involved the linear Zeeman shift due to the
external field. The result predicts the three resonances {|− 3/2⟩ ↔ |− 5/2⟩, |− 7/2⟩ ↔
|− 5/2⟩, |− 7/2⟩ ↔ |− 9/2⟩} at a detuning of {1.78± 0.05, 2.23± 0.09, 2.84± 0.12} kHz.
Within the uncertainty in the measurement of the beam waist, we can say that this
prediction agrees with the observations. It is interesting to notice that since the light
shifts are quadratic by nature, each spin state is shifted equal to qm2

F +βmF from the
zero. Where q is the amplitude of the tensor light shift and β is the effective amplitude
coming from the linear Zeeman shift plus the vector light shift. As a consequence, the
Raman resonances between the neighboring spin states |mF⟩ ↔ |mF ± 1⟩ is shifted
linearly q(2mF + 1) +β.

Furthermore, we observe that the difference between the resonances | − 3/2⟩ ↔
|− 5/2⟩− |− 7/2⟩ ↔ |− 5/2⟩, |− 7/2⟩ ↔ |− 5/2⟩− |− 7/2⟩ ↔ |− 9/2⟩ is found to be
0.47± 0.14, 0.44± 0.14 kHz. We can extrapolate this reasoning to obtain the resonances
for the entire ground state manifold. Moreover, the resonances can be calibrated
with the optical power of the laser. Figure 5 bottom right summarises the measured
value of the resonances and extrapolated to the entire ground state manifold. In
the section, I conclude that spin-dependent tensor light shifts are measured, and the
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entire spectrum of resonances is obtained. We’ll proceed to measure the scattering
rate linked to the Moglabs laser.

2.2.3 Measurement of Scattering rate

As we will see later in this chapter, scattering associated with the spin-dependent light
shift can be a limiting factor for coherent spin manipulation. Measuring the heating
rate directly in the experiment helps us to characterize this scattering rate. In the
experiment present in this sub-section, we directly measured the temperature raised
in the Fermi gas by holding the Fermi gas in the beam responsible for inducing the
light shifts on the atoms. The dipole trap depth is significantly larger than the energy
acquired by the gas during the light pulse. Therefore, atoms do not leave the trap with
all the energy acquired during the pulse maintained in the gas, and we can directly
deduce the scattering rate from the heating rate.

For this, we prepare the Fermi gas with 10 spin states and re-compress the gas
inside the dipole trap with a trap depth Udip ≈ 65µK. The trap depth Udip >> kBT

is sufficiently large as compared to the energy gained kBT by the atoms from the
scattering processes. Hence, the atoms remain inside the trap during the scattering
events. For this measurement, either beam 1 or beam 2 is pulsed with 6 mW power.
The detuning of the beam to the excited state F=9/2

3P1 is kept ∆ = −400 MHz. After
turning off the beam, the Fermi gas is released from the dipole trap. The temperature
of the gas is measured after a time of flight. The pulse duration of the beam is varied
to plot the curve shown in the figure 6. Black dots on the curve are the residual
heating of the gas when there was no light pulsed and the time was varied. This
residual heating comes from the acoustic vibrations of the dipole trap and needs to
be considered for this study. The figure on the right shows the normalized heating
rate to 1 mW of power in the beam. We observe the heating rate from the beam
as 287± 22nK.s−1.mW−1. The uncertainty in the measurement is fitting uncertainty
from the covariance matrix only. Please note that this analysis does not take into
account any experimental uncertainties. Furthermore, the beam waist at the location
of the atom is 180± 5µm, this is because of the fact that this data was taken before the
change of the beam waist as explained in the sub-section 2.5.2.

Let an atom absorbs a photon of momentum  hk⃗1 from a coherent laser beam and
then spontaneously emits a photon of momentum  hk⃗2 in a random direction, then
the change in momentum of the atom is given by δp⃗ =  hk⃗2 −  hk⃗1. The square of the
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change in momentum is δp⃗2 = ( hk⃗2 −  hk⃗1)
2 =  h2(k⃗2 − k⃗1) · (k⃗2 − k⃗1), which expands

to δp⃗2 =  h2(k⃗2 · k⃗2 + k⃗1 · k⃗1 − 2k⃗1 · k⃗2). Taking the average of the square of the change
in momentum, we have:

⟨δp⃗2⟩ =  h2
(
⟨k⃗2 · k⃗2⟩+ ⟨k⃗1 · k⃗1⟩− 2⟨k⃗1 · k⃗2⟩

)
(2.2.2)

Since the emitted photon is in a random direction and is independent of the ab-
sorbed photon, ⟨k⃗1 · k⃗2⟩ = 0, and the magnitudes are ⟨k⃗21⟩ = ⟨k⃗22⟩ = k2R, where kR
is the recoil wave vector. Thus, ⟨δp⃗2⟩ =  h2(k2R + k2R) = 2( hkR)

2. Furthermore, the
change in the total energy of the gas due to this process is given by:

dEtotal
dt

= γsc
⟨δp2⟩
2m

= 2γscER (2.2.3)

Where ER =  h2k2R/2m is the recoil energy of the 689 nm photon absorbed or emitted
by the atom. A thermalized gas in 3 dimensions at a temperature T has the total energy
Etotal = 3kBT , where kB is the Boltzmann constant. Then, the scattering rate γsc is
given by:

γsc =
3

2

kB
ER

dT

dt
(2.2.4)

This scattering rate can be calculated by directly measuring the temperature in-
crement as a function of time. From Figure 6, the scattering rate is calculated as
1.8± 0.07s−1 per mW of optical power in the beam. The theoretical calculations from
the equation 2.1.2 give the scattering rate < γsc >mF= 0.54s−1 per mW when aver-
aged over all the spin states mF. The theoretical prediction is approximately three
times less than the experimental observations.

To interpret this abnormal heating rate, we have questioned the spectral purity of
the Moglabs laser. The spectral impurities of the diode laser can lead to amplified
spontaneous emission, which in turn causes excessive scattering. One way to solve
this issue is to filter the laser output by a Fabry-Perot cavity. I tested a Fabry-Perot
cavity in the optical path of beam 1. Measurement with the cavity showed a reduction
in heating rate to 65± 4nK.s−1 per mW as shown in the figure right of 6. This heat-
ing rate corresponds to a scattering rate 0.43± 0.06s−1mW−1, which agrees with the
theoretical prediction. The measurement showed that the cavity improved the spec-
tral quality of the diode laser, which resulted in the desired expectation of scattering
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Figure 6: The figure shows the measurement of the heating rate from the beam used for spin-
dependent light shits. The detuning to the excited state F = 9/2

3P1 is kept ∆ = −400
MHz for his measurement. Red dots show the heating rate directly from the beam.
Blue dots show heating from the light filtered by the cavity. Black dots are residual
heating. Left: Direct measurement of heating rate with 6 mW power in the beam
while 2.5 mW power after the cavity filtering. Right: Normalized heating rate to
1 mW power in each case. The dashed grey line is a theoretical estimation of the
heating rate according to the equation 2.1.2 at 1mW of beam power with 180 µm
beam waist.

rate. However, improvements in vibrational instabilities are necessary to ensure the
cavity’s robustness for daily experiment operation. The construction of the cavity with
improved vibrational stability and a robust lock is in progress. Therefore, we will not
use this cavity during the period of this thesis.

We now have an in-depth understanding of the spin-dependent light shifts and their
associated scattering rate. The ground state manifold is ready for spin modification.
To do this, we will proceed to the following part.

2.3 controlled manipulation of nuclear spin states

In this section, I will present a scheme for adiabatic passages between the spin-states
|mF⟩ ↔ |mF ± 1⟩. Once we have resolved the ground state manifold 1S0 quadratically
in section 2.2.2, it is possible to select the two spin states and coherently manipulate
them within the ground state manifold with low spontaneous emission. I will apply
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this scheme experimentally to spin states |− 5/2⟩ ↔ |− 7/2⟩. We obtained an approx-
imate 80% on-way adiabatic passage efficiency, which is constrained by spontaneous
emission. This one-way scheme is generalizable to the ten spin states in the ground
state manifold 1S0.

2.3.1 Outline of the scheme

As described in the Figure 4, our experimental setup consists of two beams. beam 1
which is π polarized and beam 2 which is circularly σ+ + σ− polarized. We engineer
our scheme through the process of two-photon adiabatic Raman passage. We can
think of this process as one photon absorbed in beam 1 and second photons emitted
in beam 2 or vice-versa. Thus, it is possible to couple the two spin states which differ
by |mF⟩ ↔ |mF + 1⟩. Two photon Raman process can come from π+ σ+ photons or
π+ σ−. Since the light shift is quadratic, it is possible to cross a resonance through
only one set of polarization at a time for a given detuning of ω1 −ω2 of the two
beams. We have optimized our optical pumping sequence to prepare the Fermi gas in
the negative spin states. For the negative spin states, Clebsch-Gordan coefficients for
the σ− transition are stronger than σ+ transition, so it is desirable to take advantage of
π+ σ− transition. In this particular case, the Raman resonances are crossed for δ > 0
for negative spin states and δ < 0 for positive spin states, as shown in Figure 7.

2.3.2 Spectrum of Hamiltonian with two beams

Before moving on to the experimental results, I will discuss the Hamiltonian associ-
ated with two-photon couplings. I will highlight the dynamics of the eigenenergies of
this Hamiltonian as a function of detuning δ. I will start by considering a case where
each spin state in the ground state manifold of the 87Sr is coupled through two beams
that have the electric field amplitude (Eπ,Eσ−) with (π,σ−) polarizations respectively.
For a general point of view, recall the equation 2.1.3 that estimates couplings of the
spin states |mF⟩ and |mF + q1 − q2⟩ with the arbitrary polarizations q1 and q2.

We can define the basis in the dressed picture such that the quadratic light shift is
included in a time-independent part of the Hamiltonian. I will define each state basis
as |mF +n⟩ ≡ |mF +n,Nπ −n,Nσ +n⟩, where (Nπ,Nσ) are the number of photons
in the (beam 1, beam 2) respectively and n is an integer. Furthermore, each spin state
|mF⟩ is connected to |mF ± 1⟩ spin states by the π+ σ− two-photon Raman couplings,
with the detuning is defined as δ(t) = ω1(t) −ω2(t). Each dressed state |mF +n⟩ has
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Figure 7: Above is an illustration explaining the scheme for selective two-photon couplings.
For simplicity, only the negative spin states in the ground manifold are displayed.
Detuning between the two beams defined as δ = ω1 −ω2. (Ω1,Ω2) are the Rabi
couplings from the beam 1 and beam 2 respectively. Left: The transition is resonance
through π+ σ− couplings. Right: The transition is resonance through π+ σ+ cou-
plings. The direction of the arrows does not show any physical process. The figure
is not to scale.

energy nδ(t), a time-dependent diagonal part of the Hamiltonian. The off-diagonal
Rabi couplings under this Hamiltonian calculated from the second-order perturbation
theory as,

 hΩmF2
mF1

2
= |Eπ|

∣∣Eσ−

∣∣ ∑
|mF′⟩

〈
mF2

∣∣ϵ∗π · d̂
∣∣mF′

〉 〈
mF′

∣∣ϵσ− · d̂
∣∣mF1

〉
∆mF′

(2.3.1)

Where |mF′⟩ are all the excited states in the 3P1 manifold. Typically ω1 −ω2 is of
the order of kHz while the detuning to the excited state is of the order of 100’s of MHz.
Hence ∆mF′ can be approximated as ∆mF′ = ωe −ω1 ∼ ωe −ω2. The dipole matrix
element part µmF,mF′ =

〈
mF′

∣∣ϵσ− · d̂
∣∣mF

〉
can be calculated from the Wigner-Eckart

theorem and depends only on the properties of the atom. We can calculate the Rabi
couplings for all ten spin states using the equation 2.3.1. The ten spin states effective
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Hamiltonian with all the Rabi couplings and quadratic light shifts have a tridiagonal
form, which is written as,

Ĥ(δ(t)) = Ĥls +
 h

2


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0 Ω
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. . . 5δ(t) Ω
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0

0 0 0 . . . Ω
7/2∗
5/2

7δ(t) Ω
9/2

7/2

0 0 0 . . . 0 Ω
9/2∗
7/2

9δ(t)


(2.3.2)

This effective Hamiltonian consists of two parts, the first part Ĥls that is time-
independent gives the quadratic light shift the same as calculated in the sub-section
2.1.1, and the second part is time-dependent and is zero in the absence of beam 2 with
σ− polarization. For the coupling of the spin states |mF⟩ ↔ |mF ± 1⟩ via two coher-
ent fields with the polarization π and σ−, this Hamiltonian describes the two-photon
Raman processes. The eigenenergies spectrum of this Hamiltonian is made by diago-
nalizing this Hamiltonian. The spectrum consists of avoided energy crossing between
the spin states. These avoid crossings are the signature for the possibility of manipu-
lating the spin states. Figure 8 shows the eigenenergy spectrum of this Hamiltonian
based on the experimental parameters.

In Figure 8, we observe avoided crossings between the eigenenergies of spin states
|mF⟩ ↔ |mF + 1⟩, which shows the possibilities of two-photon transitions. To per-
form two-photon transitions adiabatically, we use these avoided crossings [Zener and
Fowler, 1932]. Effective Rabi coupling, which is the size of the avoided gap in figure
8, determines the strength of the transition. The effective two-photon Rabi coupling
associated with these crossings is given by:

Ω2ν
mF,mF+1 ∝

√
I1I2 (2.3.3)
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Figure 8: The figure shows the spectrum of the eigenenergies of the Hamiltonian con-
cerning the detuning δ between the two beams. Here, the respective power in
beam 1 andbeam 2 is 5mW and 2.5 µW respectively with the beam waist of 180

±5 µm. Detuning for both the beams is kept at ∆ = −700 MHz from the excited
state F = 9/2,3 P1. For better visibility of the lines, only the negative spin states are
plotted with their respective color code.

The two-photon Rabi coupling Ω2ν
mF,mF+1 scales as the square root of the intensities

of the two beams beam 1 and beam 2. Since the tensor light shift is proportional to the
intensity I1 in the beam 1. The ratio of the two-photon Rabi coupling and the tensor
light shift ∆E is:

Ω2ν
mF,mF+1

∆E
∝

√
I2
I1

(2.3.4)

Additionally, in order to isolate the two-level system, the effective Rabi coupling
must be less than the tensor light shift. This leads us to the following requirement:

Ω2ν
mF,mF+1 << ∆E → I2 << I1 (2.3.5)

Furthermore, we also observe the crossings between the spin states |mF⟩ ↔ |mF+ 2⟩
involving four-photon transitions (may not be visible in the figure due to smaller
strength as compared to avoided crossing associated with the two-photon transitions).
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This four-photon process decreases the spin selectivity depending on how strong the
effective four-photon Rabi coupling Ω4ν

mF,mF+2 are associated with them. It is neces-
sary to minimize these higher-order processes to maintain the selectivity of spin states.
The effective Rabi couplings involving four-photon transitions are expressed in terms
of the two-photon Rabi couplings:

Ω4ν
mF,mF+2 =

Ω2ν
mF,mF+1 ·Ω2ν

mF+1,mF+2

2∆
∝ I1I2

I1
∝ I2 (2.3.6)

Where ∆ is the difference between two-photon and four-photon resonances. In our
experiment where I1 >> I2, These resonances depend only upon the quadratic light
shift induced by the beam 1. Hence, the difference between them ∆ scales as ∆ ∝ I1.
Since the two photon Rabi couplings are proportional to

√
I1I2 and four photon Rabi

couplings scales as Ω4ν
mF,mF+2 ∝ I2. The ratio between the two is given by:

Ω4ν
mF,mF+2

Ω2ν
mF,mF+1

=

√
I2
I1

(2.3.7)

We can immediately notice the relative strength of the two Rabi coupling scales as
the square root of the ratio of the intensities in the two beams. The lower the intensity
in the beam 2 compared to the intensity in beam1, the lower the four-photon Rabi cou-
pling. However, to preserve the coherence of the two-photon Raman process, we can-
not arbitrarily reduce the intensity of the beam 2. In Figure 8, I show the eigenenergies
spectrum with the relative strength of the intensities of the two beams as I1/I2 = 500.
The relative intensity is sufficient for the two-photon Rabi coupling to be large enough
to realize the adiabatic passages while keeping the four-photon Rabi coupling low. The
relative coupling strength between the two is Ω4ν

mF,mF+2/Ω
2ν
mF,mF+1 = 5%. Hence, For

the manipulation of the spins throughout this thesis, we will adapt the case where
I2 << I1. Concluding our conversation for this subsection. Next, I’ll discuss the
scheme’s experimental outcomes.

2.3.3 Raman adiabatic passages

Based on the discussion in the previous sub-section, it is now possible to drive adia-
batic passages between desirable spin states by chirping the detuning δ between the
two beams through a particular Raman resonance. It is desirable to have more power
in the beam 1 to have well-resolved Raman resonances compared to the effective Rabi
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coupling between the initial and the target state. In contrast, decreasing the inten-
sity of the beam 2 sufficiently low decreases the probability of four-photon transition
|mF⟩ ↔ |mF±2⟩ drastically. However, lowering the intensity in beam 2 also decreases
the effective two-photon Rabi couplings that require a slower chirp rate. In addition,
we need to be careful that this chirp rate remains sufficiently fast compared to the
typical decoherence time of the system. The Landau-Zener probability of success for
an adiabatic following is defined as []:

PLZ(Ωeff, δ̇) = 1− exp
(
−2π

Ω2
eff

4δ̇

)
(2.3.8)

Where Ωeff is the effective Rabi coupling, it can be either two-photon or four-
photon. The δ̇ is the chirp rate. The probability approaches one under the condi-
tion δ̇ << Ωeff. The robustness to transfer the population only through a desired
resonance is provided by maintaining the correct adiabatic conditions such as initial
frequency, final frequency, and the chirping rate associated with a particular resonance.
If the chirp parameter is chosen carefully such that:

Ω4ν
mF,mF+2 << δ̇ << Ω

2ν
mF,mF+1 (2.3.9)

We can be diabatic to a four-photon transition but adiabatic to a two-photon transi-
tion. Thus, it is possible to engineer two-photon adiabatic passages through a particu-
lar resonance even though we may cross some four-photon transitions while chirping
the frequency of the beam. Additionally, we can adapt the chirp rate such that the
ratio of four-photon coupling to two-photon coupling is minimal.

A spin-polarized Fermi gas is prepared in the spin state |− 7/2⟩ in order to realize
adiabatic passages. As described in sub-section 2.2.2, the magnetic field is slowly
aligned collinearly with the π polarization of the beam 1. Then the beam 1 is turned on
to maximum intensity I1 = 9.3W/cm2 in 2 ms. The frequency of the beam 1 is kept at
∆ = −700MHz from the F = 9/2,3 P1 hyperfine state. Beam 1 lifts the degeneracy of
the ground state manifold. To conduct this experiment, please note that the intensity
of beam 1 is not locked because the chirp time ( 10 ms) of the experiment is sufficiently
short compared to the slow drifts of the intensity in the beam 1. Since the frequency
of beam 2 is chirped through the resonance, the adiabatic passage is robust enough to
have a high probability of transfer even with slow intensity fluctuations in beam 1.
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Figure 9: Figure shows the experimental results for the adiabatic sweeps. The detuning to the
F= 9/2

3P1 excited state is ∆ = −700 MHz for both the beams. The intensity in
the beam 1 and beam 2 is 9.3 W/cm2 and 5.1 mW/cm2 respectively. The measured
population with associated error bars in each spin state scaled with the measurement
efficiency of each spin state. The sum of the population in spin states |− 7/2⟩ and
| − 5/2⟩ is represented by the black-filled circular points. Left: forward adiabatic
passage from spin state |− 7/2⟩ to |− 5/2⟩ with detuning δ = ω1−ω2 ramp between
the two beams from 5 kHz to 13 kHz. Right: Similarly, a backward adiabatic passage
from spin state |− 5/2⟩ to |− 7/2⟩ with a detuning ramp 13 kHz to 5 kHz.

After the previous steps, beam 2 turned on adiabatically to 5.1mW/cm2 in 2.5 ms.
The frequency of the beam 2 ramped in such a way that detuning δ = ω1 −ω2 is
chirped from 5kHz to 13kHz for different time durations. In the end, both beams are
turned off in the same manner they were turned on. The population of atoms in each
spin state is measured by the spin-dependent momentum transfer protocol [Bataille
et al., 2020]. Figure 9 shows the measurement of the spin populations with respective
error bars as they evolved during the experiment. The figure is re-scaled for the 78 %
efficiency of the population measurement. The figure shows the total number of atoms
(∼ 15000) measured for each data point, represented by black dots. We observed that
the number is not constant throughout the experiment.

At the beginning of the experiment, approximately 90 % of atoms are in the spin
state |− 7/2⟩, while 10 % of atoms are in the spin state |− 5/2⟩. As the chirp time of the
detuning becomes larger, the spin state |−5/2⟩ starts to populate and reaches a plateau
where approximately 80% atoms are transferred to the target spin state |− 5/2⟩. It is
important to notice for further slow chirp rate, spin state |− 3/2⟩ starts to populate. At
the optimum chirp rate around 20 ms 80 % atoms are transferred to |−5/2⟩ and 10 % to
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|− 3/2⟩ and the remaining are still in spin state |− 7/2⟩. The overall process efficiency
is evaluated, with the passage repeated in reverse chirp direction, from 13kHz to
5kHz.The result shows a similar output as the forward passage. Around 20 ms of the
chirp time we observe 60 % atoms in |− 7/2⟩ and 10 % atoms in |− 3/2⟩ and |− 5/2⟩
each. With the forth and back passage 65 % atoms have been recovered to initial state
|− 7/2⟩. One-way adiabatic passage efficiency is 80 %. Even after crossing the multiple
four-photon transition, it was possible to realize adiabatic passage between the spin
states |mF⟩ ↔ |mF±1⟩. The robustness of adiabatic passage allows us to manipulate
spin states selectively with the help of the proper direction of frequency chirp and the
choice of initial and target spin state.

2.4 spin texture with site selective adiabatic passages

The spin-dependent light modulated spatially can have spatial selectivity on atoms.
One way to do this is simply retroreflecting the light to form an optical lattice, where
the number of dimensions we retroreflect the light gives the control over the num-
ber of dimensions in which we can spatially select the spin dependence. Patterns of
atoms based on site-selective light shifts have been demonstrated [Griffin et al., 2006;
Kolkowitz et al., 2016]. These experiments prepare a quantum state for many body

physics [Mandel et al., 2003]. Furthermore, writing the spin textures with spatially re-
solved spin-dependent light shifts opens intriguing possibilities for studying various
quantum phases such as antiferromagnetism [H. Sun et al., 2021].
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Figure 10: Illustration for spacial and spin-dependent tensor light shifts. Up: Spacial geome-
try of 532 nm 2D lattice combined with 689 nm 1D lattice along the diagonal of 532

nm lattice. Here, lattice spacing for the 689nm lattice kept a689 =
√
2a532. Exper-

imentally projection of the 689 nm lattice along the plane of the 532 nm lattice is
with a689 ≈ 360nm, which is 10% less than the lattice spacing along the diagonal
of the 532 nm lattice. Down: Considering the 10% mismatch in the two lattice
spacing spin-dependent light shift felt by each spin state along the diagonal of the
532 nm lattice. The Green dashed line represents the trapping potential from the
532 nm lattice, while the solid line represents the light shift felt by each spin state.
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In this section, I aim to outline our scheme for realizing Raman adiabatic passages
that are spatially dependent. Even though beam 2 stays homogenous, adiabatic pas-
sageways can be engineered at the region of highest intensity alone because light shifts
(Raman resonances) inside the optical lattice are proportional to the local intensity of
beam 1. Therefore, our scheme to coherently flip the nuclear spin states enables the
possibility of handwriting a predictable spin texture.

2.4.1 Scheme overview

To understand the scheme, I will first highlight some of the features of our 3D optical
lattice. Several layers of quasi-2D lattices in the vertical direction along the gravity are
formed by the combination of 532 nm and 1064 nm lattices. 1D lattice with several
planes along the direction of gravity is formed by 1064 nm light. In each plane, a 2D
lattice is formed by the 532 nm light. The beam 1 and beam 2 introduced earlier have
the azimuthal angle of 45◦ with two 532 nm lattice beams, such that beam 1 and beam
2 are along the diagonal of the 2D lattice formed by the 532 nm light. Beam 1 and beam
2 has an altitude angle of 16◦ from the plane of the 2D lattice.

Furthermore, Beam 1 is retroreflected to form a 1D 689 nm lattice along the plane of
the 2D lattice with the effective lattice spacing a689 ∼ 360 nm in this plane. The lattice
spacing of the 2D lattice along the diagonal is approximately

√
2a532 ∼ 390 nm. Both

have a 10% differential lattice spacing. Since the Raman resonances are proportional
to the local intensity of the 689 nm lattice, it is possible to realize the adiabatic Raman
passages at the sites where the intensity of the Beam 1 is above a threshold intensity,
and with a homogeneous Beam 2. We need to consider the 10% difference in the two
lattice sites, but the robustness of the adiabatic conditions will allow us to write spin
textures with even this discrepancy.

Figure 10 up shows the combination of 532 nm and 689 nm lattice. Due to the
periodicity of the 1D 689 nm lattice, only the atoms at the sites where the intensity is
close to maximum experience the Raman adiabatic passages between the spin states
|mF⟩ ↔ |mF ± 1⟩. Figure 10 up shows the intensity profile of the 689 nm lattice
considering the 532 nm lattice. We see that the intensity of the 689 nm lattice is not
always maximum at the location where the intensity of the 532 nm lattice is maximum.
In fact, on every 11th lattice site, the intensity profile of the 689 nm lattice felt by the
atoms frozen in the 532 nm lattice repeats.

We aim to realize the adiabatic passages at the site where the intensity is close to
maximum. Thanks to the adiabatic criteria 2.3.8, by choosing an appropriate frequency
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window with a time that is slow enough for the 532nm lattice site where the intensity
of beam 1 is above the threshold for Landau-Zener criteria to fulfill. This means only
the atoms in every other site go through an adiabatic passage.

2.5 spin selective coherent rabi oscillations

Once we have isolated a system of two levels from the ground state manifold of several
spin states, it is possible to drive coherent Rabi oscillations between the two isolated
spin states. This also provides an opportunity to carry out a series of two-level unitary
rotations within the ground state manifold with the condition:

Ω2ν
mF,mF±1

TLS
=
I2
I1
<< 1 (2.5.1)

Where Ω2ν
mF,mF±1 is the two photon Rabi coupling and TSL is the tensor light shift.

In this section, I will present the schemes by which we can couple the two isolated
spin states and perform Rabi rotations between them. I’ll start with the scheme for the
two isolated spin states that differ by ∆mF = 1. Then, I will discuss the coherence of
the Rabi oscillations amongst these spin states. Finally, I will summarise the scheme
where the Rabi oscillations are performed between the two spin states that differ by
∆mF = 2.
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2.5.1 π− σ configuration

Figure 11: The figure shows the experimental observation of Rabi oscillations between the
spin states |mF⟩ ↔ |mF±1⟩. The power in beam 1 is 4.5 mW while the power in beam
2 is 0.8 µW respectively. Both beams have a waist of 325± 5µm at the location of
atoms. Both the beams have a detuning of -600 MHz from the excited hyperfine
state F = 9/2,3 P1. The intensity of beam 1 was locked during the experiment. {(a),
(b), (c)} shows the Rabi oscillations between the spin states | − 5/2⟩ ↔ | − 7/2⟩,
|− 5/2⟩ ↔ |− 3/2⟩ and |− 7/2⟩ ↔ |− 9/2⟩ respectively. Measured spin states are
{|− 7/2⟩, |− 3/2⟩, |− 7/2⟩} respectively. (d) shows the theoretical prediction of the
Rabi oscillation map where the y-axis is detuning in terms of ΩmF±1

mF
with typical

experimental parameters. The population in the target spin state has been plotted
in the map.
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As shown in section 2.2.2, each resonance is measured with the help of the Raman
resonance spectroscopic scheme. We know the frequency of beam 2 (or the detuning
between the two beams) at which each resonance occurs after fitting equation 2.2.1 on
the experimental data. We can select a particular resonance to drive Rabi oscillations.
Then, the detuning between the two beams is set to match the chosen resonance. The
time of the square pulse of the beam 2 scanned to observe the Rabi oscillations between
two resonant spin states |mF⟩ ↔ |mF+1⟩. Since the coupling between the two resonant
spin states is from π + σ− photon, I call this scheme π + σ− configuration. Note
that the intensity of the beam 1 is locked during this experiment. The experimental
data in figure 11 shows the Rabi oscillaitons between the states |− 3/2⟩ ↔ |− 5/2⟩,
|− 5/2⟩ ↔ |− 7/2⟩ and |− 7/2⟩ ↔ |− 9/2⟩. Population in the initial or the target state
is measured. It is difficult to measure the population in spin state mF = |− 9/2⟩ for
the resonance between |− 7/2⟩ ↔ |− 9/2⟩ because of the weak coupling of this spin
state to the excited state because of the weaker Clebsch–Gordan coefficient compared
to the other spin states. For the resonance |− 7/2⟩ ↔ |− 9/2⟩ population in the initial
state |− 7/2⟩ is measured.

As I will show in the sub-section 2.5.2, the coherence time of observed Rabi oscilla-
tions is sufficiently long 295ms compared to a typical π pulse. Hence, we can extract
the effective Rabi couplings directly fitting the data with the equation:

P(t)mF→mF±1 = Sin2

(
Ωeff

2
t+ϕ

)
(2.5.2)

Where, P(t)mf→mF+1 is the measured population in the target spin state |mF±1⟩.
Ωeff is the effective Rabi couplings between the resonant spin states |mF⟩ ↔ |mF ± 1⟩.
This expression relies on the fact that the resonances are well known from the sub-
section 2.2.2. Therefore, the detuning δ is assumed to be zero for a particular resonance
while fitting. Please note that only in Figure 11 (c), the population in the initital spin
state is measured. Therefore, fitted is done with the equation 1− P(t)mF→mF+1

. The
effective fitted Rabi couplings for the spin states {Ω

−7/2

−5/2
,Ω−5/2

−3/2
,Ω−9/2

−7/2
} are found to

be approximately {109, 103, 102}Hz. Figure (d) shows the theoretical simulation with
similar experimental parameters that shows the similar expected time scale for the
Rabi oscillations between the spin states |− 5/2⟩ ↔ |− 7/2⟩.

In Figure (a), the Rabi oscillations are between the spin states |− 5/2⟩ ↔ |− 7/2⟩.
For this data, our spin-dependent momentum transfer technique [Bataille et al., 2020]
allowed us to measure the population between the spin states | − 3/2⟩ ↔ | − 7/2⟩,
which confirms the fact that no atoms are being transferred to the neighboring spin
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state | − 3/2⟩. Similarly, in Figure (b), The Rabi oscillations are between the spin
states | − 5/2⟩ ↔ | − 3/2⟩. While we also measure the population in the spin state
|− 7/2⟩ confirming that there are not atoms in this spin state. The ratio of the power
P1/P2 = 1/5500 between the beam 1 and beam 2 is chosen in such a way that the two
resonances are well separated. Overall, the effective Rabi frequency needs to be greater
than the spontaneous emission rate, as well as greater than the fluctuations in tensor
light shift. In addition, as we will see in the next sub-section inhomogeneity in tensor
light shift also plays a crucial role. Here, we confirm that we can selectively drive
the coherent Rabi oscillations in the ground state manifold 1S0 under the scheme for
being resonant with the spin state |mF⟩ ↔ |mF ± 1⟩.

2.5.2 Coherence of Rabi oscillations

In this sub-section, I will determine the coherence time of the Rabi oscillations ob-
served in section 2.5.1. As I will demonstrate in the following chapter, the coherence
between two spin states is crucial in various interferometric schemes. Moreover, I will
compare two situations. In the first case, the beam waist is 180± 5µm, and in the latter
case, I increased the beam waist to 320± 5µm. As a result, the quality and coherence
time of the Rabi oscillations have improved in the latter scenario. Measuring the co-
herence time of Rabi oscillations for spin states |mF⟩ ↔ |mF± 1⟩ is a straightforward
task. For this, I scanned the time of the square pulse of beam 2 long enough until I saw
the contrast of the Rabi oscillations decaying. Figure 12 shows the experimental data
fitted with the equation 2.5.3. Where PmF

is the population in the state mF, Ω is the
Rabi frequency, and by definition t0 is the coherence time of the oscillations.

P(t)mF
= a0 + a sin(Ωt+ϕ) exp (−t/t0) (2.5.3)
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Figure 12: The figure shows the coherence time measurement of the Rabi oscillations. Both
Beam 1 and beam 2 have a detuning of -600 MHz from the excited hyperfine state
F = 9/2,3 P1. In both the plots, blue dots represent spin state |− 3/2⟩, and the red
dots represent spin state | − 7/2⟩. Up: Rabi oscillations between the spin states
|− 5/2⟩ ↔ |− 3/2⟩. The beam waist at the position of atoms is 320± 5µm. The
optical power in the {beam 1, beam 2} is kept { ∼3.5 mW, 0.8 µW }. Down: Rabi
oscillations between the spin states |− 5/2⟩ ↔ |− 7/2⟩. The beam waist at position
of the atoms is 180± 5µm. The optical power in the {beam 1, beam 2} is kept { ∼5

mW, 3 µW }.

Consider the situation where the cross-sectional profile of the intensity of the two
beams beam 1 and beam 2 is Gaussian. The Rabi coupling Ω induced by the beam
depends upon the intensity of the beamΩ ∝

√
I and the variation of the Rabi coupling

along the cross-sectional plane of the beam is defined by the Gaussian profile Ω ∝
Ωmax exp (−2x2/w2). where Ωmax is the maximum Rabi coupling felt by the atoms,
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w is the beam waist at the location of the atoms and x is the position of the atomic
cloud. Here, I consider the fact that the size of the atomic cloud is small compared
to the beam waist. I am interested in knowing the variation of the Rabi couplings as
the function of x along the cross-sectional profile of the beam. The first-order partial
derivative of the Rabi coupling induced by the beam 1 concerning the position of the
atoms x is given by the equation:

∣∣∣∣∂Ω1

∂x

∣∣∣∣ ∼ 2x

w2
Ω1 (2.5.4)

Therefore change in Rabi coupling due to beam 1 only can be aprroximated as
δ(Ω1) = 2 x δx

w2 Ω1. Where δx is the size over which this change occur. The condi-
tion that must be satisfied for maintaining the homogeneous Rabi coupling over the
size of the atom cloud ∆x is given by:

Ω1Ω2

∆
>> δ

(
Ω2

1

∆

)
(2.5.5)

>> 2
Ω1

∆
δ(Ω1) (2.5.6)

>> 2
Ω1

∆

2 x δx

w2
Ω1 (2.5.7)

This leads us to the following condition:

Ω2

Ω1
>>

4xδx

w2
(2.5.8)

In the above derivation ∆ is the detuning to the excited state and Ω1Ω2

∆ is the effec-
tive Rabi coupling. Furthermore, in our experimental scheme to isolate the system of
two levels, we require Ω1 >> Ω2. Combining these two conditions, we can obtain the
inequality:

1 >>
Ω2

Ω1
>>

4.x.δx
w2

(2.5.9)

For the typical experimental parameters Ω1/Ω2 ∼ 70. The in situ size of the atomic
cloud is approximately 2 µm. Initially, the beam waist at the location of the atomic
cloud was 180± 5µm. After putting all these parameters in the equation 2.5.9, we
find out that, to maintain the uniform Rabi coupling throughout the atomic cloud, the
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position of the atomic cloud should be within the range of x << (0.64± 0.02)w. Here,
w is the waist of the beam. However, our current beam alignment procedure allows
the accuracy of the order of w. That is not sufficient to fulfill this condition. One way
to improve this accuracy is to increase the beam waist at the location of the atoms. I
did the same by putting the telescope with approximately 1.8 linear magnification.

Figure 12 bottom shows the Rabi oscillations with beam waist 180 ± 5µm at the
atoms, while the top figure shows the Rabi oscillations when the beam waist increased
to 320 ± 5µm. We observe that the period of effective Rabi oscillations in the two
figures is different, mainly because of the different beam waist in the two cases. In
the two cases for a given power, the intensity felt by the atoms is different. For a fixed
detuning ∆ to the excited hyperfine state effective Rabi coupling between the spin
state |mF⟩ ↔ |mF±1⟩ is given by the equation:

Ωeff ∝
√
I1I2 ∝

√
P1P2
w2w2

∝
√
P1P2
w2

(2.5.10)

Where Ωeff is the effective Rabi coupling, {I1, I2} are the intensities in the two
beams respectively. The intensity of the beams depends further on the power (P) and
the waist (w). Since the two beams have an identical waist at the position of atoms,
we notice the dependence of the effective Rabi coupling on the power and beam waist
on the right-hand side of the equation 2.5.10. The measured time period T = 1/Ωeff

for one oscillation in two cases is observed nearly as T{180,320}µm = {1.56, 14.29}ms
with a ratio T320/T180 ∼ 9. I call T180 period of oscillation when the beam waist was
180 µm and similarly T320 period of oscillation when the beam waist was 320 µm.
Calculation of T = 1/Ωeff from the beam waist and power in the two beams gives
the ratio T320/T180 8.5± 0.5. When taking the two data, I considered the difference
in optical power in both beams and documented it carefully. The two results agree,
considering uncertainties in beam waist and optical powers. Hence, the change in the
period of Rabi oscillation is because the beam waist is different in the two cases.

2.5.3 σ− σ configuration

In the previous sub-section 2.5.1 , we have seen the Rabi oscillations between the
spin states |mF⟩ ↔ |mF ± 1⟩. In this sub-section, I will present a different scheme
in which we drive Rabi oscillations between the spin states |mF⟩ ↔ |mF ± 2⟩. This
scheme expands our ability to manipulate the spin states from |mF⟩ ↔ |mF± 1⟩ to
|mF⟩ ↔ |mF ± 2⟩ in the ground state 1S0 manifold. I will call this scheme σ − σ
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configuration because the two-photon process is the absorption of σ+ photon in beam
2 and the emission of σ− photon inside the same beam and vice versa. The beam 1 is
used only for lifting the degeneracy of the ground state manifold. I will be discussing
both the advantages and limitations of this scheme.

As described in the above sub-section 2.2.1, DDS controls the RF input of the two
AOMs of the two beams. I modulated this RF output from the DDS that drives beam 2
with Double-sideband suppressed-carrier (DSB-SC) amplitude modulation [Wikipedia
contributors, 2025]. Output after this modulation creates the two sidebands without
the carrier. It is a very standard technique used in radio communications. The idea
is to tune the frequency difference of the two sidebands with the resonance of two
states |mF⟩ ↔ |mF± 2⟩. beam 1 is detuned far away compared to the difference in the
energy levels of the two states but within the limit of the bandwidth of the AOM that
is driving this beam. Since beam 1 intensity is locked, we need to be careful to detune
it within the bandwidth of the lock, which is nearly 1kHz. In this scheme, beam 1 lifts
the degeneracy of the ground state quadratically as in the previous scheme. The two
sidebands of beam 2 can drive the two-photon process where one photon absorbed
is σ+ in one sideband and one photon emitted is σ− in the other sideband and vice
versa.

Figure 13: The figure shows the experimental observation of Rabi oscillations in the σ − σ
configuration. The optical power in the {beam 1, beam 2} is kept { 1.18 mW, 93 µW
}. Both beams have a waist of 325± 5µm at the location of atoms. Both the beams
have a detuning of -600 MHz from the excited hyperfine state F = 9/2,3 P1. Left:
resonance between the spin state |− 3/2⟩ ↔ |− 7/2⟩. Right: Rabi oscillations be-
tween the spin states |− 3/2⟩ ↔ |− 7/2⟩. In both the figure red dots are the spin
state |− 7/2⟩ and blue dots are spin state |− 3/2⟩.
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The figure 13, left: shows the resonance between the spin states | − 3/2⟩ ↔ | −

7/2⟩. Here, one Rabi oscillation period is larger than the inverse of the width of
the resonance. Hence, we can directly fit the plot with a Lorentzian to extract the
frequency at which resonance occurs. For the spin state | − 7/2⟩, the data is fitted
with P(f) = A/(1+ (f− f0)/Γ). Similarly, for the spin state |− 3/2⟩, it is fitted with
1 − P(f). Where f0 is the frequency at the resonance, Γ is the width of Lorentzian,
and P(f) is the population in the excited state. The fitting parameter gives resonance
f0 = 1448.2± 1Hz for the spin state |− 3/2⟩, and f0 = 1447.2± 1Hz for the spin state
|− 7/2⟩. The two resonances are in agreement with each other within the errors. In
the figure 13, right: the Rabi oscillations between the same two spin states shown
with the coherence time {t−3/2, t−7/2} = {40± 2, 48± 8}ms respectively. Simultaneous
measurement of the population in two spin states shows that the population in two
spin states varies complementary from each other. Furthermore, the decoherence in
both spin states is the same within the fitting error. It is important to notice that the
coherence time of the Rabi oscillations in this configuration is shorter than the π− σ

configuration shown in the next subsection 2.5.2. We explain this based on the fact
that the polarization in the beam 2 is not perfectly σ+ + σ− and has a π component in
it. The degeneracy lift (at power 1.18 mW) from the beam 1 is weaker in this case as
compared to the π− σ scheme. Since in σ− σ configuration only beam 2 is responsible
for the two-photon process, the decoherence effect is enhanced compared to the π− σ
configuration.

Our spin-dependent momentum transfer [Bataille et al., 2020] measurement allows
us to measure the populations between spin states separated by ∆mF = 2. As an ad-
vantage while performing the σ− σ scheme, population measurements for the initial
and target spin states are done in a single shot. In this scheme, the two-photon pro-
cess is by the two sidebands in beam 2 alone. Due to this, we require approximately
one order of magnitude more power in beam 2 as compared to π − σ configuration
to have a sufficient strong drive. As a consequence of which, the power in beam 1
reduces (the two beams comes from the same PBS). Hence, for a given output power
coming out of the laser head, light shifts on the spin states |mF⟩ become smaller com-
pared to the π− σ configuration. Furthermore, it becomes more challenging to isolate
a two-level system as per our scheme. Here, I have shown the results for the Rabi
oscillations between the spin states |− 3/2⟩ ↔ |− 7/2⟩. However, it is straightforward
to drive the Rabi oscillations in other spin states. For example, between spin states
|− 5/2⟩ ↔ |− 9/2⟩.
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E N C O D E D I N N U C L E A R S P I N S O F 8 7 S r

R
amsey interferometer, originally developed by Norman F. Ramsey in
1949, has become a cornerstone in the field of precision measurement,
metrology and quantum computation. This method uses two separated
oscillatory fields to precisely measure the energy difference and the co-
herence between the two quantum states [Ramsey, 1949]. This method

can also be applied to internal atomic states as quantum states. With atomic states of
ultracold atoms, thermal noise is minimized, leading to longer coherence times and
more precise measurements. These precise measurements are applied to study fun-
damental physics, such as to measure gravitational constant [J. B. Fixler et al., 2007;
Lamporesi et al., 2008] and fine structure constant [Cadoret et al., 2008]. A Ramsey
interferometer used to build atomic clocks to precisely measure atomic transition fre-
quencies by utilizing phase-dependent interference patterns. Such atomic clocks when
utilizing squeezed vacuum states can enhance the sensitivity in the phase of the Ram-
sey interferometer beyond quantum projection noise, achieving precision at or beyond
the standard quantum limit [Kruse et al., 2016; Madjarov et al., 2020; Wineland et al.,
1994]. In general, a Ramsey interferometer is a crucial tool for probing quantum states
in quantum simulation [Cetina et al., 2016; T. Li et al., 2016] and quantum comput-
ing [Lee et al., 2005]. Therefore, it is crucial to explore the scope and applications of
Ramsey interferometers employing atomic states.

In this chapter, I will summarize our study using the Ramsey interferometer within
two isolated nuclear spins of a large spin ground state manifold of 87Sr. This Ramsey
interferometer allows us to measure the energy difference between two isolated nu-
clear spin states. The Ramsey interferometer encoded in nuclear qubits also provides
a precise method to probe qubit gate operations on them. These measurements are
crucial because they provide the basis for manipulating qubit states. These measure-
ments are vital in the areas dealing with quantum computation, quantum metrology,
and quantum simulation. Next, I will demonstrate how I improved the quality of
phase estimation in our experimental data by reducing phase drifts in our interferom-
eter.

41
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Furthermore, the generalization of the two nuclear spin Ramsey interferometers to
larger spin interferometers significantly enhances the capacity to perform complex
quantum computations, as it increases the dimensionality of the Hilbert space [God-
frin et al., 2018a]. In the next sections, I will explore the broader implications and
applications of large spin interferometers. One of the key applications I will discuss
is their use as quantum sensors, specifically for making independent measurements
of vector and tensor light shifts. Additionally, I will explore the application of large
spin interferometers in simultaneously measuring two atomic variables, demonstrat-
ing how this technique can be used to measure two non-commuting observables. Dis-
cussion of the measurement limit and an extensive study of various noise sources of
large spin interferometers will conclude this chapter, showcasing their versatility and
power.

3.1 ramsey interferometer within nuclear spins
|mF⟩ ↔ |mF ± 1⟩ of 87Sr

Nuclear spins are used for various metrological sensing applications [Jackson et al.,
2021; Jarmola et al., 2021; Waldherr et al., 2012]. Nuclear spins in alkaline-earth atoms
serve as natural carriers of quantum information and quantum metrology due to their
extended coherence times and the ability to control them coherently using magnetic
and optical fields. Nuclear spins in platforms such as NV-centres and dopants in
silicon are shown to be excellent carriers of quantum information due to their long co-
herence times [Morishita et al., 2020] [Soltamov et al., 2019]. The ground state of 87Sr

is a closed shell with zero electron angular momentum. The nuclear spins within the
ground state manifold of 87Sr have weak magnetic moments such that they are highly
isolated from the environment. As a result, they are perfect for studying applications
that require long coherence. Control of qubits encoded in the nuclear spins of 87Sr

has been demonstrated using magneto-optical fields [Barnes, Battaglino, Benjamin J.
Bloom, et al., 2022b]. Here, I will present the Ramsey interferometer embedded in the
two isolated nuclear spins |mF⟩ ↔ |mF ± 1⟩ within the ground state manifold. I will
begin with an overview of the scheme and then discuss the experimental details.

3.1.1 General idea

As I have demonstrated in the earlier chapter 2, the resonance between the spin states
|mF⟩ ↔ |mF ± 1⟩ can be identified with the help of Raman resonance spectroscopy.
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Once we have identified the desired resonances, Rabi oscillations can be driven be-
tween the chosen spin states |mF⟩ ↔ |mF ± 1⟩ or |mF⟩ ↔ |mF ± 2⟩ based on the π− σ
or σ− σ scheme. However, for the interferometers I will introduce in this chapter, I
will stick to the π − σ scheme. In this section, I will present two types of Ramsey
interferometers between the nuclear spin states |mF⟩ ↔ |mF ± 1⟩. The first interfer-
ometer in which both π/2 pulses are applied off-resonant with the non zero detuning
δ = ω1−ω2. The detuning is changed after each experimental cycle to detect the Ram-
sey spectrum. The second interferometer in which the two π/2 pulse are applied on
resonance. The phase accumulated between the two π/2 pulses is defined by a phase
gate between the two π/2 pulses. The result is obtained by changing the detuning
δ = ω1 −ω2 or the time duration of the phase gate at each experimental cycle.

3.1.2 Ramsey interferometer with non-resonant π/2 pulses

A spin-polarized Fermi gas is prepared in the spin state |− 5/2⟩. The magnetic field is
aligned parallel to the electric field vector of the beam 1 similar to the Raman resonance
spectroscopy scheme introduced in the earlier chapter 2. The magnetic field is parallel
to the direction of the electric field vector of the beam 1 for all the interferometers
introduced in this chapter. For further interferometers in this chapter, I shall skip
defining the orientation of the magnetic field. Then the intensity of the beam 1 is
ramped to its maximum value 1.9 W/cm2 in 3.5 ms. At this moment the intensity of
beam 1 is locked at approximately 95 % of the maximum value. As shown in the figure
14 the typical response time of the lock is approximately 2 ms, 4 ms time is given to
the lock to settle to a desired intensity. Once the intensity of beam 1 is locked, the
ground state manifold is splitted quadratically with minimum fluctuations. We are
now ready to do the interferometery.
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Figure 14: The figure shows two simultaneous Ramsey interferometers for the spin states |−
3/2⟩, | − 5/2⟩, | − 7/2⟩ with an actual sequence applied for the experiment. Here,
the initial spin state is | − 5/2⟩. The intensity of the beams {beam 1, beam 2} is
approximately equal to {1.9W/cm2, 0.6mW/cm2} during the Ramsey sequence.
Both the beams have a detuning of -600 MHz from the excited hyperfine state F =
9/2, 3P1. The intensity of beam 1 was locked during the experiment. The figure on
the top shows the measured target spin states. Red dots represent the population
in the spin state |− 3/2⟩, and the dark blue dots represent the population in the
spin state |− 7/2⟩. The solid lines are the evolution of the state with the equation
3.1.3. The figure on the bottom shows the intensity profile of both beams during
the whole experiment scaled to their respective maximum intensity. The solid-filled
region shows the intensity profile for the beam 1, and the hatched region shows the
intensity profile for the beam 2. The Bloch sphere represents the quantum state
of the spin states during the Ramsey sequence. In the Bloch sphere, state |mF⟩
represents the spin state |− 5/2⟩, and the state |mF ± 1⟩ represents the spin states
|− 3/2⟩ or |− 7/2⟩.
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After turning on the beam 1 for 7.5 ms, the first π/2 pulse is applied by turning on
beam 2 for 2.17 ms with a square pulse of intensity 0.6mW/cm2. The first π/2 pulse
creates the superpostion between the spin states | − 5/2⟩ ↔ | − 3/2⟩ or | − 5/2⟩ ↔
| − 7/2⟩ depending upon the detuning δ = ω1 −ω2 between the two beams (the
π/2 is off resonant but the detuning is within the energy difference of the two spin
state). Here, the detuning between the two beams is set by the detuning between the
driving Rf of the two DDSs that control the AOMs of the two beams. I have shown in
the previous chapter that with appropriate relative intensities I1/I2 in the two beams
{beam 1, beam 2}, we can isolate a system of two spin states. Hence, for a given detuning
δ, we can isolate either of the systems of two spin states that are |− 5/2⟩ ↔ |− 3/2⟩ or
|− 5/2⟩ ↔ |− 7/2⟩. After the first π/2 pulse, beam 2 is turned off for 8.3 ms. During the
dark time of 8.3 ms, the superposition of the two spin state |mF⟩ ↔ |mF ± 1⟩ precesses
along the equator on the Bloch sphere with the frequency set by the quantity η that is
given by the light shift between the two spin states and the detuning between the two
beam η = ∆E/ h+ (ω1 −ω2). After the dark time, a second π/2 pulse is applied for
2.17 ms by turning on the beam 2 again with a square pulse of 0.6mW/cm2. Lastly, the
intensity of the beam 1 is ramped from 1.9W/cm2 to approximately zero in 5 ms. As a
consequence of the whole sequence, we have applied a Ramsey sequence of two π/2
pulses for 2.17 ms separated by the dark zone for 8.3 ms. During each experimental
cycle, the detuning δ just before the pulse of the first π/2 pulse is varied in such a way
that we cross the two resonances |− 5/2⟩ ↔ |− 3/2⟩ or |− 5/2⟩ ↔ |− 7/2⟩.

Figure 14 shows the experimental result of the sequence described in the above
paragraph. The figure on the bottom represents the sequence of the intensity of the
two beams applied during the sequence. The intensity of the beam 1 is locked at 95%
of the maximum intensity during the Ramsey sequence. The hatched region shows
the two square pulses applied by turning on the beam 2. Bloch spheres illustrate the
evolution of the two-spin state system at several stages of the Ramsey sequence. At
each stage population of the two spin states involved in the interferometer can be seen
as either {|mF + 1⟩, |mF⟩} = {|− 3/2⟩,−5/2⟩} or {|mF − 1⟩, |mF⟩} = {|− 7/2⟩,−5/2⟩}. The
figure on the top shows the population in the spin states |− 3/2⟩ and |− 7/2⟩. These
spin states are the target states for two Ramsey interferometers with the same initial
spin state |− 5/2⟩. Blue dots represent the Ramsey interferometer between the spin
states |− 5/2⟩ ↔ |− 3/2⟩, and red dots represent the Ramsey interferometer between
the spin states |− 5/2⟩ ↔ |− 7/2⟩. The π/2 pulses for the sequence are approximately
2.2 ms. Hence, we observe that the envelope of the fringes has FWHM roughly equal
to the 1/Tπ/2 ≈ 460 Hz. Furthermore, the dark time between the two π/2 pulses is 8.3
ms. The inverse of the dark time 1/Tdark sets the interfringe width of approximately
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≈ 100 Hz. As a result, we see ≈ 4.5 fringes inside the FWHM of the envelope. The
experimental output agrees with the expected number of fringes inside the envelope.

Now, I’ll proceed to compare the experimental findings with the theoretical frame-
work. Consider the first Hamiltonian Ĥµ:

Ĥµ =


E−3/2 −  hδ  hΩ

−3/2

−5/2
0

 hΩ
−3/2∗
−5/2

E−5/2
 hΩ

−5/2

−7/2

0  hΩ
−5/2∗
−7/2

E−7/2 +  hδ

 (3.1.1)

within the manifold of the three spin states |− 3/2⟩, |− 5/2⟩, |− 7/2⟩. The Hamilto-
nian 3.1.1 governs the evolution of the quantum state when both beams are activated.
The diagonal part of the Hamiltonian describes the light shifts between the spin states
while also considering detuning δ between the two beams, and the off-diagonal part
gives the Rabi couplings between the two neighboring spin states. The second Hamil-
tonian Ĥν:

Ĥν =


E−3/2 −  hδ 0 0

0 E−5/2 0

0 0 E−7/2 +  hδ

 (3.1.2)

describes the situation when only beam 1 is activated. The unitary operators Û
corresponding to these Hamiltonians is defined by Û = exp(−iĤt/ h), where Ĥ can
be either of these Hamiltonians. Within the Hilbert space of three spin states, the initial
spin state evolves according to the series of unitary operators which are described by
the equation:

|ψ⟩ = Ûµ(Tπ/2) Ûν(τ) Ûµ(Tπ/2)|− 5/2⟩

where, Ûj∈{µ,ν} = exp
(
−iĤjt/ h

) (3.1.3)

The first operator creates the superposition between the spin states |mF⟩ ↔ |mF ± 1⟩
when the initial spin state is |mF⟩. The second operator is for the free evolution during
the time τ when the beam 2 is deactivated. The atoms are dressed during this time,
and there are no two-photon transitions except from the beam 1 itself. Lastly, there is
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the third operator for the second π/2 pulse. This pulse brings the atoms to the target
state if the time τ is zero. Time integration of the evolution equation 3.1.3 determines
the evolution of the initial spin state.

The solution of the evolution equation with the experimental timings of π/2 pulse
duration and the dark time is plotted on the top of the figure 14 as the solid lines. The
number of fringes of the theoretical model coincides with the experimental results.
For the Ramsey interferometer between the spin states | − 5/2⟩ ↔ | − 7/2⟩ and | −

5/2⟩ ↔ |− 3/2⟩, the central fringe is the bright fringe for both the theoretical model
and the experimental results. For these spin states, the resonance is found by fitting
the envelope with a Gaussian and pointing the center at the detuning of 2.92± 0.02
kHz. Similarly for the spin states |− 5/2⟩ ↔ |− 3/2⟩ at 2.25± 0.02 kHz.

Here, I presented that we drive a Ramsey interferometer for the chosen nuclear
spin states within the ground state manifold of the 87Sr. In the context of π− σ con-
figuration, two spin states within the ground state manifold can be deterministically
selected for Ramsey interferometry (effective Rabi frequency << Tensor light shift).
From the experimental data we can simultaneously determine the resonance and the
Rabi couplings between the two spin states. The proper choice of the Rabi pulse time
and the resonance helps to isolate the two-level system for the interferometry, which
avoids the leakage of the interferometer population in the neighboring spin states. In
later section on high-dimensional interferometry, we shall see how critical it is to select
these parameters to avoid interference between the two Ramsey interferometers. We
will now continue our discussion with the Ramsey interferometer with the resonant
π/2 pulses.

3.1.3 Ramsey interferometer with resonant π/2 pulses

In the data I just presented, the contrast of the interferometer reaches its peak at
resonance, where the system is most sensitive to the detecting phase of the interfer-
ometer. By applying a resonant π/2 pulse, we can selectively isolate and control a
specific pair of spin states within the ground state manifold. Additionally, when the
detuning δ is varied between the two π/2 pulses, it only affects the phase of the inter-
ferometer without touching its contrast, allowing us to adjust the phase on resonance
with the selected spin states. This decoupling offers more flexibility and precision in
experiments, enabling the measurement of physical quantities sensitive to the interfer-
ometer’s phase. In our case, this type of interferometer is sensitive to the light shift
for the selected spin states.
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For this interferometer, a spin-polarized Fermi gas is prepared in the spin state
| − 5/2⟩. Beam 1 is turned on and locked the same way as described in the earlier
subsection. The first π/2 pulse is applied by turning on beam 2 for 3.16 ms with a
square pulse of intensity 0.7 mW/cm2. At the resonance, the first π/2 pulse creates the
superposition between the spin states |− 5/2⟩ ↔ |− 7/2⟩ with equal population. After
the first π/2 pulse, beam 2 is turned off immediately. Next, the phase gate is applied
(by switching the frequency of the DDS) during the dark time when the beam 2 is off. It
should be noted that during the phase gate beam 1 remains active, creating light shifts
on the atoms. Hence, the dark time of the interferometer is not truly dark as there
is still the light-matter interaction. But for simplicity, I shall call this time the dark
time. Because the beam 1 is on during the phase gate, the overall detuning during the
phase gate is given by η = ∆E/ h+ (ω1 −ω2), ∆E being the spin-dependent light shift.
For the experimental data that I will present, I kept the frequency difference between
the two beams ω1 −ω2 = 0. Hence, the overall detuning for this interferometer
becomes η = ∆E. The phase evolution of the spin states during the phase gate is
given by ϕ = ηt. As shown in the figure 15, the superposition of the two spin state
|mF⟩ ↔ |mF ± 1⟩ precess in the plane along the equator on the Bloch sphere during
the phase gate. After the phase gate, a second π/2 pulse is applied for 3.16 ms by
turning on the beam 2 again with a square pulse of 0.7 mW/cm2. Lastly, the intensity
of the beam 1 is ramped from 2 W/cm2 to zero in 5 ms. As a consequence of the
whole sequence, we have applied a Ramsey sequence of two π/2 pulses for 3.16 ms
separated by a phase gate. It’s worth mentioning that before and after the phase gate,
due to technical limitations, there is a dead time of 300 µs and 100 µs when only beam
1 remains on. During these times, the interferometer phase evolves according to the
detuning set during the last operation.
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Figure 15: The figure shows the Ramsey interferometer for the spin states |− 5/2⟩ ↔ |− 7/2⟩.
Here, the initial spin state is |− 5/2⟩. The intensity of the beams {beam 1, beam 2}
is approximately equal to {2 W/cm2, 0.7 mW/cm2} during the Ramsey sequence.
Both the beams have a detuning of -600 MHz from the excited hyperfine state
F = 9/2,3 P1. The intensity of beam 1 was locked during the experiment. Up: Both
initial and target spin states are measured. Red dots represent the population in
the spin state |− 7/2⟩, and the black dots represent the population in the spin state
| − 5/2⟩. Down (a): represents the effective qubit operation during the Ramsey
sequence. Down (b): The Bloch sphere represents the quantum state of the spin
states during the Ramsey sequence. Phase accomulated during the phase gate is
given by ϕ = ητ. Down (c): The intensity profile of both beams during the whole
experiment scaled to their respective maximum intensity. The solid-filled region
shows the intensity profile for the beam 1, and the red Hatched region shows the
intensity profile for the beam 2. The black Hatched region shows the duration of
the phase gate applied. The x-axis during the phase gate does not represent the
actual duration and is re-scaled for better visibility. The figure represents the actual
sequence applied for the experiment.
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The circuit diagram, evolution of the state at each stage of the interferometer, and
intensity profiles of the two beams are all shown in the bottom figure 15 combined.
Here, the phase accumulation due to the phase gate becomes ϕ = ητ. The precession
time τ during the phase gate is varied from 10 µs to 1.01 ms and the experimental
results are plotted in the figure top 15. The data is taken with two data points for each
value of time. Since our spin-dependent momentum transfer protocol [Bataille et al.,
2020] measures the population of spin states that differ by ∆mF = 2, the complete
dataset was taken in the two experimental run. The data for the spin states |− 7/2⟩
and |− 3/2⟩ was taken in the first run and the data for the spin states state |− 5/2⟩
and | − 1/2⟩ was taken in the second run. Figure up 15 shows the results of the
experimental data. We observe that there is no population leakage in the nearby spin
state such as |− 3/2⟩, and we see oscillation in the population between the desirable
spin states.

Moving on, I will compare the experimental results with theory. The evolution of
the state during the interferometer is given by the equation:

|ψ(t)⟩ = Ûµ(Tπ/2) Ûν(τ) Ûµ(Tπ/2)|− 5/2⟩

where, Ûj∈{µ,ν} = exp(−iĤjt/h)
(3.1.4)

Where the Hamiltonians are described by the equations 3.1.1 and 3.1.2 at resonance
to the addressed spin states. The experimental data in figure 15 is fitted with the func-
tion PmF = Asin2(ωmF

2 τ+ϕ) +ϕ0 for each spin states. In this function, τ is the phase
gate time and other symbols have their usual meaning. The fitting of the function in
the respective spin state population gives the frequency of the fringe of the Ramsey
interferometer, which is equal to the energy difference between the two spin states
involved in the Ramsey interferometer. This energy difference is the combination of
the linear Zeeman shift from the external magnetic field and the light shift caused by
the beam 1. The energy difference is found to be ∆E−7/2

−5/2
/ h = {2.15± 0.02, 2.18± 0.02}

kHz when fitted on the population in spin state |− 5/2⟩ and |− 7/2⟩ respectively. Both
the fitting results agree with each other within the fitting error bars. Additionally,
the light shift is close to the theoretical prediction 2.29± 0.02 kHz made for the zero
detuning δ at the same intensity in the beam 1. Here, the difference of 0.1 kHz is only
because of the day-to-day fluctuations of the intensities of the beam 1 at the location
of the atoms. These fluctuations come from the drift in the aiming of the beam, the
efficiency of the fiber coupling, and the locking intensity.
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One advantage of the Ramsey interferometer over the Raman spectroscopy scheme
introduced in the former chapter 2 is that if the phase of the fitting function is cali-
brated, we only require one data point of the interferometer to estimate the energy
splitting (light shift + Zeeman shift) ∆E. Therefore, for maximum sensitivity of the
interferometer towards the energy splitting, we rely on identifying the resonances
through the Ramsey interferometer at non-zero detuning or the Raman resonance.
Moving on, I have shown the application of this interferometer as a sensor for light
shifts depending upon the chosen spin states within the constraint |mF⟩ ↔ |mF ± 1⟩.
However, the Ramsey interferometer does not differentiate between the tensor light
shift, and the combination of vector light shift and the linear Zeeman shift caused by
an external magnetic field. I shall demonstrate later in this chapter that the two can
be detected and separated in a single shot if we run an interferometer by extending
the Hilbert space to four spin states within the ground state manifold.

We now shift our focus to measuring the coherence of the qubit within the nuclear
spins. Coherence time is an essential quantity in quantum systems. It describes the
duration, a qubit can maintain its quantum state. To measure this coherence time, I
take the opportunity to use the interferometer described in this section.

3.2 coherence associated with the qubit encoded in
nuclear spins of 87Sr

Advances in quantum computing and metrology using neutral atoms depend upon
the ability to encode qubits for longer periods. This period is usually characterized
by the qubit coherence time. The qubit’s coherence time of a device determines its ca-
pacity to perform multiple quantum gate operations. Neutral atoms with closed elec-
tronic shells favor the long coherences due to purely nuclear spin. When comparing
the nuclear spin degrees of freedom to electronic spin degrees of freedom, consistent
results have shown longer qubit coherence, with timescales reaching seconds [Hensen
et al., 2020; Maurer et al., 2012; Park et al., 2017]. A few examples with long-lived
nuclear spins qubits are demonstrated with Yb atoms [Huie et al., 2023; Lis et al.,
2023; Norcia et al., 2023]. [Hölzl et al., 2024] demonstrated a 2.5 ms qubit lifetime
at room temperature with Sr circular Rydberg atoms. Recently, qubits encoded in the
nuclear spin states of 87Sr approaching a coherence of about a minute is demonstrated
[Barnes, Battaglino, Benjamin J Bloom, et al., 2022a]. In this section, I will characterize
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the coherence time of the qubit encoded in the nuclear spins within the ground state
manifold of 87Sr in our experiment.

Figure 16: Measurement of the coherence time of the qubit prepared in the spin states | −
5/2⟩ ↔ | − 7/2⟩. All the quantities are normalized to the first data point and
presented in percentages. Diamond points in brown color represent the contrast of
the interferometer with respective fitting error bars. Figure on the left shows the
qubit coherence time inside the beam 1. The time is measured from the end of the
first π/2 pulse to the beginning of the second π/2 pulse. The inset figure shows an
example data set used to calculate one data point for the contrast. The figure on the
right shows the contrast of the qubit in the dark. Notice that beam 1 is turned off
during the dark time. The coherence time is compared with the Fermi gas lifetime,
represented by the pink dots.

I used a Ramsey sequence to measure the qubit’s coherence time introduced in the
preceding section. Initially, I prepared a qubit between the spin states | − 5/2⟩ ↔
|− 7/2⟩ with a respective π/2 pulse duration of 3.46 ms. To probe this qubit using a
Ramsey sequence, a symmetric π/2 pulse is applied. The effective detuning η between
the two π/2 pulses is kept such that the duration of one interferometer’s fringe is
of the order of a millisecond. I investigated the following two cases. In case one,
beam 1 remains active between two π/2 pulses, and the qubit state precesses in the
presence of the tensor light shift and an external magnetic field. The time between
the two π/2 pulses is then varied within a window of 2 ms to collect approximately
1.5 fringes. In case two, following the initial π/2 pulse, the intensity of beam 1 is
decreased to zero over 2 ms and then increased symmetrically to the maximum value
before the second π/2 pulse. When the intensity of the beam 1 is zero, true dark
time is varied to within a 2 ms interval to record approximately 1.5 fringes. In both
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scenarios, I collected various datasets of 1.5 fringes at different times. For each dataset,
the contrast of the fringe is calculated. I calculated the contrast of fringe by plotting
the histogram, which is the relative population in the spin state versus the number of
experimental cycles. To estimate the error bars on the contrast, I used bootstrapping
[Bradley Efron and Tibshirani, 1993]. This involved resampling the data 1000 times
with replacement, recalculating the contrast for each resample, and then computing
the standard deviation of these contrasts to serve as the error estimate.

Figure 16 displays the decaying amplitude of the Ramsey interferometer. Each
dataset is fit using the function A = 100 exp(−t/t0). Where A is the contrast of the
fringe (in percentage) and t0 represents the 1/e time. The figure on the left illustrates
the decaying contrast of the Ramsey interferometer for case one in the presence of
tensor light shift. We observe a 45± 5 ms 1/e time in the left figure. The figure on
the right shows the contrast of the Ramsey interferometer in case two when the beam
1 is not active. Please note that in the second case, it takes 4 ms to turn off and on
beam 1 again. Hence, qubit spends 4 ms precession time in the presence of beam 1 on
top of the respective π/2 pulse time. The 1/e time is observed as 17± 7 s. This time
is also compared with the 1/e time of the polarized Fermi gas that is 4.5± 0.3 s. We
noticed that the dark coherence time of the qubit is longer compared to the lifetime of
the Fermi gas.

We observed that the primary cause of qubit decoherence is the presence of tensor
light shift which can be explained by spontaneous emission from beam 1. I demon-
strate that removing the tensor light shift increases the coherence of the qubit by at
least two orders of magnitude 102. As a result, qubit coherence can be retained for sec-
onds in the presence of the external magnetic field. Generally in the second case, qubit
coherence time can be primarily limited by inhomogeneities in the external magnetic
field and intrinsic atomic properties such as collisional decoherence. 87Sr is weakly
sensitive to external magnetic field fluctuations due to the purely nuclear spin in the
ground state. As a result, collisional decoherence is supressed. This makes nuclear
spin qubits in the dark a good platform to probe collision-dependent decoherence, as
we shall see in the following chapter. In addition to the qubit decoherence, we lose
control over the interferometer phase in the presence of the tensor light shifts for the
timescale of 10s of ms. In the second case, we lose the phase control at the timescale
of seconds. I will discuss the two cases in the following section.

With the coherence time of the qubit measured, we now turn our attention to ad-
dressing the phase noise in the interferometer, which is essential for preserving the
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precision of the measurement. In the following section, we will explore methods to
characterize phase noise and attenuate it.

3.3 attenuation of the phase noise of the interferom-
eter

Figure 17: Dynamics of phase drift in radians for the population in the spin state | − 7/2⟩,
which corresponds to the left y-axis. The dynamics of room temperature are plotted
alongside the right y-axis. The red dots indicate the population in the spin state
|− 7/2⟩, while the purple dots represent the room temperature. The inset figure
depicts the spin state population | − 7/2⟩ of an interferometer between the spin
states |− 5/2⟩ ↔ |− 7/2⟩. The population in the spin state |− 7/2⟩ are observed for
an interferometer phase tuned in the middle point of the fringe slope, 6.5 kHz.

In this section, I will identify the technical sources for enhanced phase noise and
characterize it. This will improve the quality of our experimental results.

To investigate the phase noise of our interferometric schemes, I conducted an in-
terferometer experiment between the spin states |− 5/2⟩ ↔ |− 7/2⟩ with a total inter-
ferometer time of approximately 16 ms. The time is determined from the beginning
of the first π/2 pulse to the end of the second π/2 pulse. The phase gate for this
interferometer was applied for the duration of 0.5 ms (i.e. the time between the π/2
two pulses). The detuning δ between the two beams during the phase gate is varied
from 5 kHz to 9 kHz. The inset in figure 17 shows the population in the spin state
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|− 7/2⟩ for the interferometer. For measuring the phase noise at a fixed phase gate
frequency, the phase of the interferometer is fixed approximately on the middle of the
slope of one of the fringes in the inset plot. I chose 6.5 KHz for this data set. The pop-
ulation in the spin state |− 7/2⟩ is then monitored after each 17-second experimental
cycle to observe dynamics at this fixed phase. During each experimental cycle, the
room temperature is recorded by a temperature gauge. The primary figure 17 depicts
the simultaneous dynamics of phase and room temperature. To observe a sufficient
number of drift cycles, the data is recorded for approximately 25 minutes.

The inset figure 17 is fitted with the function P−7/2 = Asin(ϕ(ω)) to extract the
contrast A and the phase ϕ(ω) of the interferometer at each ω. Therefore, we know
the mean phase ϕ(6.5kHz) at ω= 2π 6.5 kHz. The following experiment measures the
dynamics of the phase. The phase variation after each experimental cycle is obtained
by fitting the function ϕ(t) = arcsin(P−7/2(t)/A)−ϕ(6.5kHz) to the experimental data.
The main figure 17 shows the dynamics of ϕ(t) in radians along the left y-axis, while
the ambient temperature in ◦C of the room is represented along the right y-axis. Please
note that for better data readability, I have applied a transformation ϕ(t) = −ϕ(t)

that does not perturb the phase dynamics. We observed that the room temperature
and phase of the interferometer follow dynamics with similar period. To measure
the correlation between the two quantities, I take the help of the Pearson correlation
coefficient. If X is the room temperature and Y is the phase of the interferometer.
Then, the Pearson correlation coefficient between the two quantities is given by ρX,Y =

cov(X, Y)/σXσY [Pearson, 1896]. The coefficient ρX,Y lies in the interval [−1, 1], where
0 indicates no linear relationship and |1| indicates a perfect linear relationship between
X and Y. In our case, the ρϕ,Temp is found to be 0.81± 0.04, which indicates high linear
relationship between the two quantities.

We now look for the most probable cause of this phase variation. The total shift on
the atoms is caused by the combination of the Zeeman shift and light shift. The current
in the coils that generate the magnetic field has the stability of 10 ppm throughout a
shift of 1

◦C temperature. 10 ppm is equivalent to 10 mHz fluctuation for a typical 1

kHz Zeeman shift. The 10 mHz fluctuation integrated over the phase gate time 0.5 ms
appears as 3.2× 10−5 rad phase noise, which is negligible as compared to the phase
drift in the figure 17. We describe the air conditioner of the room as the source of the
enhanced phase variation. The air from the air conditioner blown by the fan affects
the polarization maintained in the fiber that delivers light in beam 1 and beam 2 to
the experimental cell. The gradual drifts in polarization translate to a slow drift of
the vector light shift induced on the atoms, resulting in the drift of the phase in the
interferometer.
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Figure 18: Correlation between the polarization maintained inside the fiber used for guid-
ing the beam 1, beam 2 to the experimental cell and the room temperature. The
figure on the left shows the correlation between fiber polarization and room tem-
perature. Purple dots represent the measured temperature, the tomato dots repre-
sent the measured photodiode voltage before the improvement of the polarization
maintenance, and the cyan cross represents the polarization maintenance after the
improvement. The figure on the right shows the correlation plot from which the
Pearson correlation coefficient is extracted. Furthermore, regression analysis indi-
cates the sensitivity of polarization to room temperature.

Figure 18 left shows the correlation between the measurement of the polarization
in the fiber and the ambient temperature. To measure the polarization drift, the light
passing through the experimental cell is filtered by a polarizing beam splitter (PBS)
alligned to 50-50 split in transmission and reflection for maximum senstivity, and the
transmitted intensity (beam 1) is then measured using a photodiode. The photodiode
voltage is plotted on the left y-axis. Furthermore, the temperature is recorded with the
help of the picolog software, which measures the voltage from the temperature gauge.
The temperature is represented on the right y-axis. Each data point is collected every
20 seconds to examine the slow drift of polarization. The correlation between polariza-
tion and temperature is assessed by calculating the Pearson correlation coefficient. We
found the Pearson coefficient as ρ = 0.85± 0.03. This suggests that the polarization
inside the fiber is strongly correlated with the room temperature.

A technique to characterize further is to see how sensitive the polarization drift is
to ambient temperature. This can be studied by plotting photodiode voltage versus
room temperature. Figure 18 right shows the variation of the photodiode voltage with
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the room temperature. The linear regression analysis Y = Xβ+ ε gives the slope β of
the data. The slope β is evaluated as 0.088± 0.008 for ρ = 0.85± 0.03. I wrapped the
fiber in an insulating foam tube to protect it from temperature fluctuations. Following
this modification, we discovered that the sensitivity β falls to −0.025 ± 0.004 with
a Pearson correlation coefficient ρ = −0.60 ± 0.09. Note that all the errors in the
estimation of ρ and β are computed by bootstrap resampling [B. Efron, 1979]. Based on
the investigation, we see that the polarization drift sensitivity to ambient temperature
is reduced by a factor of roughly 3.5. This improvement marks a significant step in
enhancing the stability of our system. Moving forward, we will now explore high-
dimensional interferometry, focusing on the use of a qudit encoded in the nuclear
spins of 87Sr to explore its applications.

3.4 high dimensional interferometry with a qudit en-
coded in nuclear spins of 87Sr

Coherent quantum control across a large Hilbert space is necessary for a scalable
quantum device. One way to build a large-scale quantum device is to increase the
number of two-state quantum devices that encode the information as a qubit (d=2).
In contrast, an alternate path for scaling is to make use of d-state devices that encode
the information in the form of a qudit (d>2) [Bullock et al., 2005]. By utilizing d-
state devices, the Hilbert space expands significantly. The enriched Hilbert space
allows for more robust quantum algorithms [Kiktenko et al., 2015], improved error
correction techniques [Muralidharan et al., 2017], and the potential for more efficient
quantum simulations [Kaltenbaek et al., 2010; Neeley et al., 2009] and computations
[Babazadeh et al., 2017; Cozzolino et al., 2019; Lanyon et al., 2009]. The number of
qubits required to store the same amount of information as a qudit of d-dimension is
by n = log2d. 87Sr with its 10 nuclear spin states in the ground state manifold has the
potential to encode qudit up to (d=10). Such a qudit carries the same information as
approximately 3.3 qubits. Along with the increase in the information capacity, High
dimensional states have higher noise resilience [Cozzolino et al., 2019].

Typically, a Ramsey interferometer is utilized for measuring both the qubit state and
its coherence. A generalized version of a Ramsey interferometer can be implemented
in a d-dimensional Hilbert space. Such an interferometer has more potential appli-
cations due to the access of multiple phases. For instance, a generalized version of
the Ramsey interferometer with nuclear spin qudit in molecules performing various
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quantum gate operations and measuring the three-state coherence of the qudit has
been demonstrated [Godfrin et al., 2018b]. In this section, I will demonstrate a qudit
encoded in nuclear spins of 87Sr with d=4 dimension. To illustrate the potential appli-
cation of the qudit, I will introduce two applications using large spin interferometry.
First, a quantum sensor that measures tensor light shift, as well as the sum of the
vector light shift and Zeeman shift. Next, simultaneous measurement of two atomic
variables.

3.4.1 Double Ramsey interferometer as a quantum sensor for light shifts

In this section, I will introduce a large spin interferometer designed specifically for
measuring the light shift within the ground state manifold. Earlier in this chapter, I
discussed the use of a Ramsey interferometer as a sensor for detecting light shifts. Fol-
lowing on the foundation, I will now present an interferometer capable of measuring
two energy differences within the ground state manifold simultaneously. The simul-
taneous measurement of two energy difference decouples tensor light shift from the
combination of vector light shifts and the linear Zeeman shift. To maintain the continu-
ity with previous discussions, I will refer to this interferometer as the double Ramsey
interferometer. This terminology is fitting, as it accurately reflects the operation of
two parallel Ramsey interferometers encoded in nuclear spins of 87Sr.

Experimental scheme overview

For this interferometric scheme, a spin-polarized gas is prepared in the spin state
| − 5/2⟩ for this interferometer sequence. At the beginning of the experiment, after
tuning on the beam 1, its intensity is locked as described in the earlier experiments.
As shown in the figure 19, a π/2 pulse is applied by turning on the beam 2 for 3.26

ms with a square pulse between the spin states | − 5/2⟩ ↔ | − 7/2⟩. After the first
π/2 pulse, the atoms are in a superposition of the spin state |− 5/2⟩ ↔ |− 7/2⟩ with
approximately 50 % population per spin state. A second π/2 pulse is applied for 3.49

ms between the spin states | − 5/2⟩ ↔ | − 3/2⟩. There is a 100 µs gap between the
first and the second π/2 pulse for the same reason as other interferometers introduced
earlier. Immediately after the second π/2 pulse, the third π/2 pulse is applied for 3.49

ms between the spin states |− 7/2⟩ ↔ |− 9/2⟩. Overall sequence of three π/2 pulses
creates the superposition of atoms within the manifold of spin states {| − 3/2⟩, | −
5/2⟩, |− 7/2⟩, |− 9/2⟩} with approximately equal population in each spin states that is
25 % of the initial population. A phase gate is applied immediately after the third
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π/2 pulse. The phase of the phase gate between the two neighboring spin states is
given by ∆ϕmF±1

mF = (∆EmF±1
mF /h+∆ωrf)t with ∆ωrf = ω1 −ω2. After a gap of 100

µs, the fourth π/2 pulse is applied for 3.49 ms to close the interferometer between
the spin states |− 3/2⟩ ↔ |− 5/2⟩. Immediately after the fourth π/2 pulse, the fifth
π/2 pulse is applied for 3.49 ms to close the interferometer between the spin states
|− 7/2⟩ ↔ |− 9/2⟩. The overall scheme is essentially a combination of two Ramsey
interferometers, where one is sensitive to the energy difference between the spin state
|− 7/2⟩ ↔ |− 9/2⟩ and the other is sensitive to the energy difference between the spin
states |− 3/2⟩ ↔ |− 5/2⟩.

Quantum sensor for simultaneous measurement of tensor light shift and combined vector
light shift with linear Zeeman shift

The double interferometer, which is encoded in the four nuclear spins, allows for the
measurement of two distinct fields. In this section, I will present a detailed analysis
on the experimental data of a double Ramsey interferometer and how we can process
this data to measure two fields.

To collect the experimental data, the time of the phase gate is varied from 10 µs to
930 µs with a sampling of 20 µs. Each data point is one experimental run of the whole
sequence. The experiment is run for each data point randomly. The experimental
results are depicted in the figure 19. The top of the figure shows the applied experi-
mental sequence of the double Ramsey interferometer. The solid-filled region in the
red shows the intensity profile of the beam 1. The intensity of the beam 1 is locked in
the same way described in the section for the two-pulse interferometer. The hatched
region in red shows the intensity profile of the beam 2 for the five square pulses applied
with their respective duration. The group of three Bloch spheres shows the evolution
of the state during the whole sequence. Each Bloch sphere shows the evolution of
the quantum state within the mF↔ mF± 1 manifold. Here, I truncated the four spin
states manifold {|− 3/2⟩, |− 5/2⟩, |− 7/2⟩, |− 9/2⟩} into the set of three two spin states
manifolds {|− 3/2⟩, |− 5/2⟩};{|− 5/2⟩, |− 7/2⟩};{|− 7/2⟩, |− 9/2⟩} that is represented on
the three different bloch sphere. I made this approximation for the sake of visual-
ization. Furthermore, for simplicity i shall call the π/2 pulse between the spin states
|− 5/2⟩ ↔ |− 7/2⟩ as κ, π/2 pulse between the spin states |− 3/2⟩ ↔ |− 5/2⟩ as α and
π/2 pulse between the spin states |− 7/2⟩ ↔ |− 9/2⟩ as β. The sequence showing the
order of π/2 pulses for the interferometer shown in figure 19 is then καβαβ. Effec-
tively, κ divides the sample into two halves. Each half will be injected independently
into a Ramsey interferometer, controlled by two pulses αα or ββ for the different
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pairs of spin states. The two interferometers are realized in parallel, the pulses being
interlaced.

The figure on the bottom represents the experimental data for the applied sequence
καβαβ. In the left figure, the measurement of the population in the spin state |− 3/2⟩
(blue) and the population in the spin state |− 7/2⟩ (red) is shown. The figure on the
right shows the population in the spin state |− 5/2⟩ (black) and the population in the
spin state |− 1/2⟩ (orange). Since the spin state |− 1/2⟩ is not part of the interferometer,
we observe a flat number of atoms within the experimental noise for the population
in this spin state. Looking at the combination of the two figures, we observe that the
phase difference of the population in the spin state |− 3/2⟩ and |− 5/2⟩ is π. Here, we
don’t measure the population in the spin state |− 9/2⟩, which is the complementary
population for the spin state |− 7/2⟩. The population between the spin states |− 3/2⟩
and | − 5/2⟩ oscillates with an expected peak to peak amplitude of approximately
35%. We can see in the figure 16, the amplitude of the interferometer with respect to
the time spent in the beam 1. Since this interferometer requires five π/2 pulses, the
amplitude further drops down to 35% as compared to the ideal percentage of 50%.
The population in the spin state | − 7/2⟩ has an amplitude of approximately 30 %.
The further slight decrement in the amplitude is probably due to the off-resonance
of the detuning δ from the energy difference of the two spin states | − 7/2⟩ ↔ | −

9/2⟩ (this suggest an imperfect π/2 pulse). The difference between the frequencies of
the two beams ∆ωrf is kept zero for this experiment by keeping ω1=ω2=110 MHz
(The frequency of the two AOM’s). Then the phase of the phase gate for the two
simultaneous interferometers is given by ∆ϕmF±1

mF = (∆EmF±1
mF / h)t. The relative phase

∆ϕ
−5/2

−3/2
of the first interferometer between the spin states |− 3/2⟩ ↔ |− 5/2⟩ measures

the light shift ∆E−5/2

−3/2
=  h.∆ϕ−5/2

−3/2
/t between the two respective spin states. Similarly

the interferometer between the spin states |− 7/2⟩ ↔ |− 9/2⟩ measures the light shift
∆E

−9/2

−7/2
=  h.∆ϕ−9/2

−7/2
/t with a relative phase ∆ϕ−9/2

−7/2
between the two spin states.

Moving on, I will compare our experimental data with the theoretical model. The
evolution of the state during the double Ramsey interferometer sequence can be de-
scribed by the equation:

|ψ(t)⟩ = Ûµ(T
−9/2

−7/2
) Ûµ(T

−5/2

−3/2
) Ûν(τ) Ûµ(T

−9/2

−7/2
) Ûµ(T

−5/2

−3/2
) Ûµ(T

−7/2

−5/2
)|− 5/2⟩

where, Ûj∈{µ,ν} = exp
(
−iĤjt/ h

)
(3.4.1)
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In this equation, operator Ûµ(T
mF
mF+1) represents the π/2 pulse between the spin

state |mF⟩ ↔ |mF+ 1⟩, TmF
mF+1 being the π/2 pulse time. Assuming that we can isolate

a manifold of four-spin states within the ten-spin state manifold, the Hamiltonians
3.4.2, 3.4.3 fully describe the dynamics of the state. Where Ĥµ is the Hamiltonian
when both the beams are active and Ĥν is the Hamiltonian when only beam 1 is active
with zero detuning δ.

Ĥµ =



E−3/2 −  hδ  hΩ
−3/2

−5/2
0 0

 hΩ
−3/2∗
−5/2

E−5/2
 hΩ

−5/2

−7/2
0

0  hΩ
−5/2∗
−7/2

E−7/2 +  hδ  hΩ
−7/2

−9/2

0 0  hΩ
−7/2∗
−9/2

E−9/2 + 2 hδ


(3.4.2)

Ĥν =



E−3/2 0 0 0

0 E−5/2 0 0

0 0 E−7/2 0

0 0 0 E−9/2


(3.4.3)

As described earlier, during the phase gate, the operator Ûν(τ) describes the phase
evolution during the time τ. I emphasize that during the phase gate, all spin states
evolve at the rate of their respective energy levels. Since the interferometer is closed
between the spin states |− 3/2⟩ ↔ |− 5/2⟩ and |− 7/2⟩ ↔ |− 9/2⟩, we only measure
the phase difference accumulated between the spin states that has closing π/2 pulse.
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Figure 19: The figure shows the interferometer within the spin states manifold {|− 3/2⟩, |−
5/2⟩, |− 7/2⟩, |− 9/2⟩} with καβαβ configuration. For the sequence, the initial spin
state is |− 5/2⟩. The intensity of the beams {beam 1, beam 2} is approximately equal
to {3 W/cm2, 0.5 mW/cm2} during the sequence. Both the beams have a detuning
of -600 MHz from the excited hyperfine state F = 9/2,3 P1. The intensity of beam
1 was locked during the experiment at 95 % of maximum intensity. Figure up:
shows the intensity profile of both beams during the sequence. The red solid-filled
region shows the intensity profile for beam 1, and the red hatched region shows the
intensity profile for the beam 2. The black hatched region shows the region for the
phase gate. Notice that the phase gate time is not constant during the experiment.
A set of Bloch spheres represents the quantum state for the manifold of four spin
states. Figure bottom left: shows the population in the spin states | − 3/2⟩ and
|− 7/2⟩. Blue dots represent the population in the spin state |− 3/2⟩, and the red
dots represent the population in the spin state |− 7/2⟩. Figure bottom right: shows
the population in the spin states | − 5/2⟩ and | − 1/2⟩. Black dots represent the
population in the spin state |− 5/2⟩, and the orange dots represent the population
in the spin state |− 1/2⟩.
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I discussed in the previous chapter 2 that the energy shift in the ground state man-
ifold consists of light shift that has three components that are quadratic, linear and
no dependence on the respective spin states |mF⟩ plus the linear Zeeman shift that
has linear dependence on |mF⟩. The light shift plus the Zeeman shift on a spin state
|mF⟩ has the form ∆EmF

= α(q)m2
F + α(l)mF + α(c). Where {α(q),α(l),α(c)} are the

tensor, the vector plus the Zeeman shift and the scalar components of the light shift.
It is straightforward to show that the difference of the light shift between the two
spin states |mF+ 1⟩− |mF⟩ is given by ∆EmF+1 −∆EmF

= α(q)(2mF + 1) + α
(l). Then

the difference of light shift between the spin states | − 3/2⟩ − | − 5/2⟩ is ∆E−5/2

−3/2
=

∆E−3/2 −∆E−5/2 = −4α(q) + α(l) and between the spin states and |− 7/2⟩− |− 9/2⟩
is ∆E−9/2

−7/2
= ∆E−7/2 − ∆E−9/2 = −8α(q) + α(l). Access to the two simultaneous

phases in a double Ramsey interferometer directly gives the values of ∆E−5/2

−3/2
and

∆E
−9/2

−7/2
from which α(q) and α(q) can be simultaneously extracted.

The populations in the figure 19 bottom are fitted with the function PmF =

Asin2(Ωt/2 + ϕ0) +A0 to extract Ω (recall ∆ϕmF±1
mF = ∆EmF±1

mF t/ h = Ωt). In this
equation, A is the amplitude of the fit, A0 is the offset, Ω is the frequency, and ϕ0

is the initial phase. The fitting on the bottom left plot gives {∆E
−5/2

−3/2
,∆E−9/2

−7/2
}/h =

{2.21 ± 0.02, 3.43 ± 0.03} kHz. The fitting on the bottom right plot gives ∆E−5/2

−3/2
/h

= 2.31± 0.02 kHz. For these fittings, I used a reduced chi-square test to assess the
goodness of fit of the model to experimental data. It is calculated using the formula
χ2red = 1

ν

∑N
i=1

(yi−fi)
2

σ2
i

. In this formula, yi represents the experimental data points, fi
represents the model predictions, σi represents the uncertainties in the experimental
data, and ν denotes the degrees of freedom. Here, ν is the number of data points
minus the number of fitted parameters. By examining the value of χ2red, I determine
the quality of the fit such that the model adequately represents the observed data. For
the fitting on the spin states {|− 3/2⟩, |− 5/2⟩, |− 7/2⟩} reduced chi-squared test gives
{0.6, 1, 0.5}. A χ2red value close to 1 confirmes the model and the noise level σi. Finally,
the two results are resented as the system of linear equations 3.4.8, and the optimal set
of coefficients that best fit the data was found using the least square method [Björck,
1996].

∆E
−5/2

−3/2
= 2.21± 0.02 kHz = 4α(q) −α(l)

∆E
−9/2

−7/2
= 3.43± 0.03 kHz = 8α(q) −α(l)

(3.4.4)

The solution gives tensor light shift α(q) = 0.30± 0.01 kHz and the linear energy
splitting α(l) = −0.99± 0.05 kHz. The linear energy splitting is the combination of
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the vector light shift induced by the beam 1 and the linear Zeeman shift caused by
magnetic field intensity during the time when the beam 1 is on. The measurement of
the magnetic field alone through a resonance spectroscopy during the double Ramsey
interferometer sequence gives −0.95± 0.05 kHz. We observed that within the error
of our measurement the vector light shift created by the beam 1 is negligible. The
polarization of the beam 1 is maintained such that it only creates the tensor light shifts.

Figure 20: The figure compares the two cases of double Ramsey interferometer καβαβ and
καββα. For the sequence, the initial spin state is |−5/2⟩. The intensity of the beams
{beam 1, beam 2} is approximately equal to {3 W/cm2, 0.9 mW/cm2} during the
sequence. Both the beams have a detuning of -600 MHz from the excited hyperfine
state F = 9/2,3 P1. The intensity of beam 1 was locked during the experiment at 95

% of maximum intensity. Figures 1: an illustration of the sequence applied during
the two cases. The red rectangle connected by the two black solid lines represents
π/2 pulses. The phase difference accumulated is shown only for the states that
have to close the π/2 pulse. Figures below : show the population in the spin states
|− 3/2⟩ and |− 7/2⟩. Blue dots represent the population in the spin state |− 3/2⟩,
and the red dots represent the population in the spin state |− 7/2⟩. The dataset is
collected before improving the interferometer’s phase noise.
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To explore further, I will discuss the symmetry of π/2 pulses in a double Ramsey
interferometer, meaning when the closing pulses of a double Ramsey interferometer
are interchanged. Figure 20 compares the two cases of the double Ramsey interfer-
ometer sequence καβαβ and καββα, respectively. The data was recorded before the
improvement of the phase noise of the interferometer discussed in Section 3.3. The
reduced chi-square test gives at least χ(2) > 3 for the fitting on all the populations in
the dataset. Hence, direct fitting cannot be used to extract the fitting parameters. It
requires a more sophisticated fitting routine to extract the value of Ω.

The process of fitting is as follows, The data points {(xi,yi)}Ni=1 with associated
measurement errors in the y-direction are given by the fitting of the images from
the experimental sequence, The errors in y-direction represents the total measure-
ment errors. I aim to fit these data points to a sinusoidal model of the form
PmF = a sin2 (Ωx+ϕ) + a0 where Ω, ϕ, a, and a0 are the parameters to be esti-
mated. First, I perform a curve fit using the standard non-linear least squares method,
which minimizes the sum of squared residuals in the y-direction. Let these initial
fit parameters be denoted by {ω̄, ϕ̄, ā, ā0}. Then the residuals in the y-direction are
computed as: ryi

= yi − ȳi = yi − a sin2
(
ω̄
2 x+ϕ

)
+ a0). As χ(2) > 3, these y-errors

cannot be interpreted as due to the measurement uncertainty. Instead, I assume that
they are the consequence of phase noise (effectively x-errors).

To estimate the x-errors ∆xi corresponding to these y-residuals which I interpret
as the phase noise of the interferometer, I calculate the gradient of the model with
respect to x at each data point given by the equation:

(
dy

dx

)
i

=
∂

∂x

(
ā sin2

(
ω̄

2
x+ ϕ̄

)
+ ā0

)
x=xi

(3.4.5)

Given that ∆yi = ryi
, the corresponding x-errors ∆xi are estimated using error

propagation:

∆xi ≈
∆yi(
dy
dx

)
i

=
ryi(
dy
dx

)
i

(3.4.6)

Here, I assume that the measurement noise on the one data point is small com-
pared to the amplitude of the fringe of the interferometer. The standard deviation
of these x-errors provides an estimate of the overall phase noise of the interferome-

ter σ∆x =
√

1
N−1

∑N
i=1(∆xi −∆x)

2. With the estimated phase noise σ∆x, I apply a
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fitting routine called Optimal Distance Regression [Boggs and Rogers, 1990], which
minimizes the orthogonal distance between the data points and the model curve, ac-
counting for errors in both the x and y directions. Finally, the ODR process optimizes
the parameters {Ω,ϕ,a,a0} by minimizing the following function:

ODR Objective: min
Ω,ϕ,a,a0

N∑
i=1

(
(yi − ȳi)

2

σ2yi

+
(xi − x̄i)

2

σ2∆x

)
(3.4.7)

where σyi
and σ∆x are the standard deviations of the y and x errors respectively.

The final parameters {Omega,ϕ,a,a0} are extracted from this optimization process,
representing the best-fit parameters that account for both x and y uncertainties in the
data. Finally, we re-calculate the y-residuals from the ODR fit and re-estimate the x-
errors using error propagation, as described earlier. The standard deviation in x-error
is the final estimate of the phase noise of the interferometer.

We observe that the population of spin state |− 3/2⟩ in the καβαβ configuration
starts with an initial phase ϕ0 = 0.89± 0.08 rad at t = 0, while in configuration καββα
it starts with an initial phase ϕ0 = 0.32± 0.08 rad. When the configuration is changed
from καββα to καββα, there is an extra phase accumulated for the population in the
spin state |− 3/2⟩ due to the fact the closing π/2 pulse for the spin states |− 7/2⟩ ↔
|− 9/2⟩ is applied before the spin states |− 3/2⟩ ↔ |− 5/2⟩. The phase accumulated
during this pulse is given by δϕ = 2πωt/2, where t= T

−9/2

−7/2
(π/2). Since we know

frequency ω for the spin state | − 3/2⟩, we can deduce this phase accumulation as
-0.54 rad. Therefore, the initial phase in καββα configuration is the sum of the initial
phase in καβαβ configuration plus the extra phase accumulated during T−9/2

−7/2
(π/2).

A conclusion is drawn from this analysis that the symmetry of the closing π/2 pulses
does not affect the quality of the light shift measurement but does influence the initial
phase of the interferometer. A similar argument holds for the population in the other
spin state |− 7/2⟩.
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Figure 21: Double Ramsey interferometer within the spin states manifold {|− 3/2⟩, |− 5/2⟩, |−
7/2⟩, |− 9/2⟩} with καβαβ configuration. For the sequence, the initial spin state
is |− 5/2⟩. The intensity of the beams {beam 1, beam 2} is approximately equal to
{3 W/cm2, 0.5 mW/cm2} during the sequence. Both the beams have a detuning of
-600 MHz from the excited hyperfine state F = 9/2,3 P1. The intensity of beam 1 was
locked during the experiment at 95 % of maximum intensity. ∆ωrf is kept 3 kHz
for this experiment. Figure left: shows the population in the spin states |− 3/2⟩
and |− 7/2⟩. Blue dots represent the population in the spin state |− 3/2⟩, and the
red dots represent the population in the spin state |− 7/2⟩. Figure right: shows the
tensor light shift and the linear energy splitting within the ground state manifold.

Let’s further investigate this interferometer by putting ∆ωrf ̸= 0. The sampling of
the data is 10 µs. Figure 21 shows the double Ramsey interferometer with ∆ωrf = 3

kHz. Now, the phase evolution of both populations |− 3/2⟩ and |− 7/2⟩ is sensitive
to the light shifts plus the difference between the frequencies ∆ωrf of the two beams.
We observe in figure 21 that the frequencies of the two population dynamics have
changed compared to the previous case in figure 19. As expected the frequencies are
less distinctive with each other. These frequencies after fitting the both populations
are {∆E

−5/2

−3/2
,∆E−9/2

−7/2
} = {5.27± 0.03, 6.58± 0.08} kHz with reduced χ(2) as {0.58, 0.98}.

The solution involving light shifts and Zeeman shift using these frequencies is given
by:

∆ω
−5/2

−3/2
−∆ωrf = ∆E

−5/2

−3/2
= 2.27± 0.03 kHz = 4α(q) −α(l)

∆ω
−9/2

−7/2
−∆ωrf = ∆E

−9/2

−7/2
= 3.58± 0.08 kHz = 8α(q) −α(l)

(3.4.8)
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The least squares solution gives tensor light shift α(q) = 0.33± 0.02 kHz and the
linear energy splitting α(l) = −0.96 ± 0.10 kHz. The result is consistent with the
previously obtained result 2. In all, I have demonstrated that we can use the large spin
interferometric scheme to measure the tensor light shifts and linear energy splitting.
We have understood fully how the phase of the double interferometer evolves with
the detuning between the two beams. I now move on to the next section where I shall
demonstrate one more application of large spin interferometers.

3.4.2 Simultaneous measurement of two atomic variables through a high dimensional
interferometery

High-dimensional interferometers further expand possibilities for quantum sensing
by providing access to more than two phases simultaneously. Recently, authors in-
troduced a method to simultaneously measure three orthogonal spin directions in a
spinor Bose-Einstein condensate of 87Rb by coupling the system to auxiliary hyperfine
states and applying unitary transformations [Kunkel et al., 2019]. This approach al-
lows them to access the spatial spin structure. Such schemes enable direct observation
of quantum correlations without state tomography.

Similar to this concept, we propose a scheme to measure two atomic observables,
whether commuting or noncommuting, using an interferometer encoded in a qudit
(four spin states) of nuclear spins in the ground state manifold of 87Sr. By employ-
ing a series of controlled unitary operations, our method enables the simultaneous
measurement of these observables. Consequently, this scheme is useful for probing
quantum correlations in ultracold atomic systems. For instance, if the populations in
the several spin states are measured simultaneously, it can provide the correlations
between the measured observables on top of their average value. We start by learn-
ing about the theoretical description of the scheme before going to the experimental
methodology and discussing the potential applications.

Simultaneously measuring two orthogonal collective spin projections

Consider an arbitrary qubit of one atom in the Hilbert space {|0⟩, |1⟩} given by
|ψ⟩ = α|0⟩ + βexp(iϕ1)|1⟩, where α and β are the probability amplitude for their
respective state and ϕ1 is the phase difference between the two states. For sim-
plicity of my discussion, I will assume α,β = 1√

2
such that the state is given by

|ψ⟩ = 1√
2
(|0⟩+ exp(iϕ1)|1⟩). It is then straightforward to show that the measurement

of spin operators Ŝx, Ŝy, Ŝz on ψ has expectation values given by ⟨Ŝx⟩ = 1
2cos(ϕ1),
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⟨Ŝy⟩ = 1
2sin(ϕ1) and ⟨Ŝz⟩ = 0 with  h = 1. Here, the operators are defined by

Ŝi =
 h
2σi∈(x,y,z) where σi are the Pauli spin matrices for two-dimensional Hilbert

space associated with the qubit state. The discussion in this sub-section aims to mea-
sure the expectation values of at least two of these operators simultaneously. For this,
I start by considering a one-atom operator given by:

Ŝϕ = R̂†z(ϕ) R̂
†
y(π/2) Ŝz R̂y(π/2) R̂z(ϕ) (3.4.9)

measuring Ŝϕ is analogous to measuring Ŝz in the basis of qubit state after a se-
quence of unitary rotation operators such as R̂z(ϕ), which is the rotation ϕ along the
z-axis and R̂y(π/2), which is the rotation π/2 along the y-axis on the state |ψ⟩. The
expectation value of Ŝϕ on the state |ψ⟩ is given by ⟨Ŝϕ⟩ = −1

2cos(ϕ+ϕ1), which can
be written in terms of ⟨Ŝx⟩ and ⟨Ŝy⟩ as follows:

⟨Ŝϕ⟩ = ⟨Ŝy⟩sin(ϕ) − ⟨Ŝx⟩cos(ϕ) (3.4.10)

Therefore, it measures the linear combination of the spin operators Ŝx and Ŝy. It is
to be noted that the phase ϕ is the phase accumulation during this unitary rotation
operation while the phase ϕ1 is the phase difference between the two states initially.
Moving on, I will now describe our measurement scheme based on this operator Ŝϕ.

Consider all the atoms initially prepared in the spin state |− 5/2⟩ state, with a total
population of N atoms. We apply a first π/2 pulse to create a qubit state between
the spin states |− 5/2⟩ and |− 7/2⟩. Here, I assume that π/2 pulses are perfect, and
on average, they distribute the population equally between the addressed spin states.
As a general case, one can show that after a π/2 pulse, the population in each spin
state is given by PmF = Ncos2(θ/2) and PmF±1 = Nsin2(θ/2) if we start in the
spin state |mF⟩. For a given θ, the sum of the populations is always equal to N.
Let’s consider the state between the spin states | − 5/2⟩ and | − 7/2⟩ as two-spinor
state |ψ ⟩ = 1√

2
(| − 5/2⟩ + exp(iϕ1)| − 7/2⟩) whose corresponding orthogonal spin

projections Ŝx, Ŝy and Ŝz have to be determined.

The measurement scheme proceeds as follows, the population of the spin state |−

5/2⟩ is mapped onto the spin state | − 3/2⟩ through a second π/2 pulse which is
defined by a unitary operator R̂1(π/2), similarly population of the spin state |− 7/2⟩
is mapped onto the spin state |− 9/2⟩ by third π/2 pulse which is defined by a unitary
operator R̂2(π/2). As a result, given the state |ψ⟩ we initially prepared, each spin state
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has N/4 atoms on average. In this Hilbert space {|− 3/2⟩, |− 5/2⟩, |− 7/2⟩, |− 9/2⟩}, the
operator R̂1(π/2) and R̂2(π/2) are given by the matrices:

R̂1

(π
2

)
=



1√
2

− 1√
2
0 0

1√
2

1√
2

0 0

0 0 1 0

0 0 0 1


(3.4.11)

and

R̂2

(π
2

)
=



1 0 0 0

0 1 0 0

0 0 1√
2

− 1√
2

0 0 1√
2

1√
2


(3.4.12)

It is to be noted that after the third π/2 pulse, the spin states |− 3/2⟩ and |− 9/2⟩
are not exposed to any operations throughout the scheme. Therefore, measuring the
population difference of the spin state |− 3/2⟩ and |− 9/2⟩ is on average equivalent
to measuring the population difference of the spin state |− 5/2⟩ and |− 7/2⟩ which
is equal to measuring the expectation value of operator ⟨Ŝz⟩ on the qubit state |ψ⟩
meaning:

⟨ψ|P−3/2 − P−9/2|ψ⟩ =
1

2
⟨ψ|Ŝ(−5/2,−7/2)

z |ψ⟩ (3.4.13)

where PmF is the probability of being in the spin state |mF⟩. This implies that, we
can measure the average value of a many body spin operator Ôz associated with the
qubit state |− 5/2⟩ ↔ |− 7/2⟩ by measuring the population in spin states |− 3/2⟩ ↔
|− 9/2⟩. The many body (total) spin operator for N number of atoms Ôz is given by:

Ôz =

N∑
i=1

Ŝ
(−5/2,−7/2)
z,i =

N

2
Ŝ
(−5/2,−7/2)
z (3.4.14)
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Here, we assume that the atoms are uncorrelated and alike, and the quantum state
of the entire system can be described as a direct product of the individual quantum
states of each atom. Therefore, measuring Ôz effectively means measuring Ŝz,i on
the i’th atom without applying any transformation on all the other atoms except the
identity transformation. The expectation value of the total spin operator Ôz is given
by:

⟨Ôz⟩ =
N

2
⟨Ŝ(−5/2,−7/2)

z ⟩ = (N−3/2 −N−9/2) (3.4.15)

where NmF is the number of atoms (expectation value) in the spin state |mF⟩. The
prefactor is N/2 because there are total N/2 atoms in the spin state |−3/2⟩ and |−9/2⟩.
By measuring the population in these states we can determine the expectation value
of Ŝz operator associated with the intended qubit state |ψ⟩.

After the third π/2 pulse, a unitary operation given by R̂z(ϕ) is applied. Finally,
to close the measurement sequence, a fourth π/2 pulse is applied between the spin
states |− 5/2⟩ ↔ |− 7/2⟩ which is given by a unitary operation R̂y(π/2). It is to be
noted since the closing π/2 pulse is between the spin states |− 5/2⟩ ↔ |− 7/2⟩ only,
we measure only the phase difference accumulated between these two spin states. The
matrices R̂z(ϕ) and R̂y(π/2) are given by:

R̂z(ϕ) =



1 0 0 0

0 exp
(
−iϕ2

)
0 0

0 0 exp
(
iϕ2

)
0

0 0 0 1


(3.4.16)

and

R̂y

(π
2

)
=



1 0 0 0

0 1√
2

− 1√
2
0

0 1√
2

1√
2

0

0 0 0 1


(3.4.17)
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The populations in the |− 5/2⟩ and |− 7/2⟩ are measured after the fourth π/2 pulse.
This measurement is defined on the basis of a many body operator Ôϕ given by:

Ôϕ =

N∑
i=1

Ĵ
(−5/2,−7/2)
ϕ,i =

N

2
Ĵ
(−5/2,−7/2)
ϕ (3.4.18)

where the one atom operator Ĵϕ is given by:

Ĵ
(−5/2,−7/2)
ϕ = R̂†1(π/2) R̂

†
2(π/2) Ŝ

(−5/2,−7/2)
ϕ R̂2(π/2) R̂1(π/2) (3.4.19)

This operator effectively measures the operator Ŝϕ after the unitary transformations
R̂1(π/2) and R̂2(π/2). The expectation value of the operator Ôϕ on the qubit state is
given by ⟨Ôϕ⟩ = −N

8 (cos(ϕ+ϕ1)) which can be further written in terms of expecta-
tion value of operator Ŝϕ as follows:

⟨Ôϕ⟩ =
N

2
⟨Ŝ(−5/2,−7/2)

ϕ ⟩ = (N−5/2 −N−7/2) (3.4.20)

Which implies measuring the N body operator Ôϕ measures the linear combination
of expectation values of operators ⟨Ŝx⟩ and ⟨Ŝy⟩. Furthermore, we can show that the
variance on the measurement of the operator Ôϕ is given by:

Var(Ôϕ,z) =
N

4
+ Var(Ŝ

−5/2,−7/2
ϕ,z ) (3.4.21)

Here, N/4 comes from the fact that there are total N/2 atoms in the spin states
| − 5/2⟩ and | − 7/2⟩. In our measurement scheme, we measure simultaneously the
expectation values of ⟨Ôϕ⟩ and ⟨Ôz⟩ because of the access to the population in the
spin states that differ by ∆mF = 2. The populations can either be |− 3/2⟩ ↔ |− 7/2⟩
or |− 5/2⟩ ↔ |− 9/2⟩. We can demonstrate that the two operators do indeed commute
with each other:

[Ôϕ, Ôz] = 0 (3.4.22)

This explains access to measuring the spin operators ⟨Ŝϕ⟩ and ⟨Ŝz⟩ associated with
the probed qubit state simultaneously. However, as a consequence, the variance in the
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measurement of Var(Ôϕ) is always higher than the variance in measuring Var(Ŝϕ)
given by 3.4.21. In conclusion, we can measure the average value of observable ⟨Ôϕ⟩
and ⟨Ôz⟩ simultaneously with increased variance compared to measuring the average
value of observables Ŝx,Ŝy and Ŝz independently. This concludes our description of
the measurement scheme. Now, we will proceed to the experimental results.

Experimental outcomes

We prepare a spin-polarized gas in the spin state | − 5/2⟩. At the beginning of the
experiment, after tuning on the beam 1, its intensity is locked as described in the
earlier experiments. A π/2 pulse is applied by turning on the beam 2 for 3.28 ms with
a square pulse between the spin states |−5/2⟩ ↔ |−7/2⟩. Following the first π/2 pulse,
the atoms are in a superposition of the spin states |− 5/2⟩ ↔ |− 7/2⟩, with roughly
50 % population per spin state. This concludes the preparation of the initial state
|ψ⟩, on which we will now apply the two-observable measurement scheme. A second
π/2 pulse is applied for 3.56 ms between the spin states |− 5/2⟩ ↔ |− 3/2⟩. The first
and second π/2 pulses are separated by a 100 µs gap, as with other interferometers
previously mentioned. Immediately after the second π/2 pulse, the third π/2 pulse is
applied for 3.62 ms between the spin states |− 7/2⟩ ↔ |− 9/2⟩. Overall sequence of
three π/2 pulses creates the superposition of atoms within the manifold of spin states
{|− 3/2⟩, |− 5/2⟩, |− 7/2⟩, |− 9/2⟩} with approximately equal population per spin state
that is 25 % of the initial population. A phase gate for 500 µs is applied immediately
after the third π/2 pulse. After a gap of 100 µs, the fourth π/2 pulse is applied for
3.28 ms to close the interferometer between the spin states |− 5/2⟩ ↔ |− 7/2⟩.

The first π/2 pulse creates the qubit between the spin states | − 5/2⟩ ↔ | − 7/2⟩.
The expectation value of spin projectors Ŝz and Ŝϕ need to be estimated. The unitary
evolution of the quantum state with experimental parameters is given by the equation
3.4.23, where the Hamiltonians Ĥj are described here 3.4.3 and 3.4.2.

|ψ(t)⟩ = Ûµ(T
−7/2

−5/2
) Ûν(τ) Ûµ(T

−9/2

−7/2
) Ûµ(T

−5/2

−3/2
) Ûµ(T

−7/2

−5/2
)|− 5/2⟩

where, Ûj∈{µ,ν} = exp
(
−iĤjt/ h

) (3.4.23)
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Figure 22: The figure shows the four pulse interferometer within the spin states manifold
{| − 3/2⟩, | − 5/2⟩, | − 7/2⟩, | − 9/2⟩}. For the sequence, the initial spin state is
| − 5/2⟩. The intensity of the beams {beam 1, beam 2} is approximately equal to
{3 W/cm2}, 0.5 mW/cm2}} during the sequence. Both the beams have a detuning
of -600 MHz from the excited hyperfine state F = 9/2,3 P1. The intensity of beam
1 was locked during the experiment at 95 % of maximum intensity. Figure up (a):
shows the intensity profile of both beams during the sequence. The red solid-filled
region shows the intensity profile for beam 1, and the red hatched region shows
the intensity profile for the beam 2. The black hatched region shows the region
for the phase gate. Figure up (b): shows a set of Bloch spheres represents the
quantum state for the manifold of four spin states. Figure up (c): shows a circuit
representing the π/2 pulses sequence. Figure bottom left: shows the population in
the spin states |− 3/2⟩ and |− 7/2⟩. Blue dots represent the population in the spin
state |− 3/2⟩, and the red dots represent the population in the spin state |− 7/2⟩.
Figure bottom right: shows the population in the spin states |− 5/2⟩ and |− 1/2⟩.
Black dots represent the population in the spin state |− 5/2⟩, and the orange dots
represent the population in the spin state |− 1/2⟩.
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Figure 22 shows the experimental data for the interferometric scheme. Figure on
top explains the experimental sequence of the interferometery. Figure (a) shows the
intensity profile for beam 1 and beam 2 during the experiment and the phase gate
profile. Figure (b) shows the evolution of the quantum state after each π/2 pulse
of the sequence with the help of a set of three Bloch spheres. Figure (c) represents
the equivalent circuit for the applied sequence. Here, the phase accumulated is from
the beginning of the first π/2 pulse to the end of the last π/2 pulse. The figure at
the bottom shows the experimental data collected from the experiment. The color
scheme for the different spin states is consistent with the one used throughout the
chapter. We notice that in the bottom left plot, the population in the spin state |− 7/2⟩
oscillates, while the population in the spin state |− 3/2⟩ remains constant, considering
measurement noise of the interferometer. In the figure bottom right, the population
in the spin state |− 5/2⟩ oscillates and the population in the spin state |− 1/2⟩ is zero
within the measurement noise.

Using the fitting function Pmf = asin2(2πω+ϕ) + a0, the ODR (Orthogonal Dis-
tance Regression) fitting routine mentioned in the previous section is applied to the
experimental data in the spin states |− 5/2⟩ and |− 7/2⟩ and the optimized parameters
{ω,ϕ,a,a0} are extracted. On these populations, the respective phase noise is repre-
sented by the error bands. The population in the spin state |− 3/2⟩ is fitted with line
P−3/2 = mx+ c, where m is the slope of the line and c is the offset. The experimental
data’s vertical error bars on both of these curves shows the measurement noise.

The population difference between the spin state |− 3/2⟩ and |− 9/2⟩ gives the av-
erage value of the operator Ôz. Here, the population in the spin state |− 9/2⟩ is not
measured but expected to be equal to the average population in the spin state |− 3/2⟩
assuming the first π/2 pulse is perfect. To measure the fluctuations in the measure-
ment of the operator Ôz both population needs to be measured simultaneously. The
population difference between the spin states |− 5/2⟩ and |− 7/2⟩ gives the expecta-
tion value of the operator Ôϕ. In our current scheme, these populations are measured
one after the other run of the experiment. Hence, we can only measures the average
value of Ôϕ.
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Figure 23: The figure shows the four pulse interferometer within the same manifold as shown
in previous figure. The intensity of the beams {beam 1, beam 2} is approximately
equal to {2 W/cm2, 1.5 mW/cm2} during the sequence, which leads to higher
intensity ratio I2

I1
. Figure left: shows the population in the spin states |− 3/2⟩ and

|− 7/2⟩. Figure right: shows the population in the spin states |− 5/2⟩ and |− 1/2⟩.

Figure 23 shows the experimental output of another set of data where the ratio of
the Rabi couplings Ω2/Ω1 is sufficiently larger such that we cannot isolate the two
spin state system. The data is taken before the improvement in the phase noise. In this
case, the π/2 pulses are not perfect, leading to the leakage of the population from one
spin state to the neighboring spin state. As a consequence, we see the reduction in the
contrast in the population of spin state |− 5/2⟩ by nearly 20% compared to the figure
22. Furthermore, we observe the oscillations in the population in the spin state |− 3/2⟩
because of the leakage of the population from the neighboring spin state |− 5/2⟩ to
the spin state |− 3/2⟩. The 20% reduction in contrast in the spin state |− 5/2⟩ may
appears as an oscillation in the spin state |− 3/2⟩. However, the oscillation in spin
state |− 5/2⟩ can be removed by the post data analysis (in order to extract Ôz), giving
the same quality of results in figure 22 but with reduced contrast.

In this section, we have now covered the theoretical description and the experi-
mental results. I have shown that the average of the two observables ⟨Ôϕ⟩ and ⟨Ôz⟩
can be deduced from the figure 22 left. It would be much better to measure the
variance in the observable ⟨Ôϕ⟩, we must measure the population in the spin states
|− 5/2⟩ ↔ |− 7/2⟩ simultaneously. One way to accomplish this is by defining a qubit
state between the spin states | − 3/2⟩ ↔ | − 7/2⟩ in the σ − σ configuration. Then,
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with the help of two π− σ pulses mapping the population within the Hilbert space
{|− 3/2⟩, |− 5/2⟩, |− 7/2⟩, |− 9/2⟩}. The initial qubit state is now defined by the spin
states with ∆mF = 2. As a result, we could now measure both populations simultane-
ously using the current measurement protocol.

3.5 measurement precision on the interferometer

Consider the figure right 24, which represents the population of the atoms in the spin
states |− 3/2⟩ after a series of three π/2 pulses with the initial spin state |− 5/2⟩. This
situation is same as doing an interferometry within four spin states without closing
π/2 pulses. The average of relative uncertainties on the measurement of one data
point is given by ∆P = 1

n

∑n
i=1

σi

Pi
where Pi is the population of the i’th point and σi

is the standard deviation associated with it. In this figure, one data point is extracted
from one picture and fitted by a sum of three Gaussians to extract the populations.
The population representing the spin state | − 3/2⟩ is the diffracted population in
one of the Gaussian, see [Bataille et al., 2020]. The measurement gives the average
relative uncertainty as 0.01. In this subsection, I will highlight potential sources, both
fundamental and technical, to assess the measurement noise in the experiment.

Figure 24: Figure left: fluctuations in the total number of atoms in the polarised Fermi gas
at the end of each experimental cycle. Figure right: Measurement noise for the
population in the spin state |− 3/2⟩ after the series of three π/2 pulses as |− 5/2⟩ ↔
|− 7/2⟩, |− 3/2⟩ ↔ |− 5/2⟩ and |− 7/2⟩ ↔ |− 9/2⟩. The error bar represents the
measurement error per shot. In both the figure, the solid line is the mean value of
the population and the color band represents the standard deviation on it.



3.5 measurement precision on the interferometer 78

Atomic shot noise

We start the interferometric experiment with N independent atoms. In our scheme,
after performing the first three π/2 pulses the atoms are in superposition of four
spin states. Let the probability of measuring the atoms in the spin state i be given
by Pi. Then, the average number of atoms ⟨Ni⟩ in the i’th spin state is given by
NPi (if our experimental sequence is perfectly reproducible) with the variance σ2Ni

=

Npi(1− pi), which quantifies the fluctuations in the measured atom number due to
quantum projection noise (QPN). The QPN contribution to the noise per spin state is
given by:

NQPN =

√
pi(1− pi)

N
(3.5.1)

We typically started with the initial number of atoms N=12000 in a polarized Fermi
gas for the data shown for the high dimensional interferometer in this chapter, see
figure left 24. Assuming perfect π/2 pulses implies an equal distribution of atoms
N/4 = 3000 in each spin state. Then the QPN contribution on the fraction of atoms in
one state is approximately 0.0043.

Photon shot noise

In our experiment, each pixel of the camera receives approximately 40000 photons
during the exposure time. The camera has maximum detection limit approximately
50,000 photons per pixel. Therefore the relative Photon shot noise, which follows a
Poisson distribution is given by:

σphoton

N
=

√
N

N
=

200

40000
= 0.005 (3.5.2)

The uncertainty in optical density (OD) in absorption imaging is affected by photon
shot noise. The uncertainty in optical density (OD) is calculated by taking two images:
one with atoms and one without (background). We can define OD as the logarithmic
ratio of light intensity without atoms to the intensity with atoms. Since both images
have around 40000 photons each, the uncertainty in the OD comes from the photon
shot noise in both images. The total OD uncertainty is the quadratic sum of the relative
fluctuations in both images and becomes 0.0071.
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However, we experimentally observed the OD standard deviation 1.5 times larger
than the theoretically calculated value of 0.0071. This observation indicates that pho-
ton shot noise contributes to the overall noise in optical detection (OD), and other
factors like camera setup imperfections and diffraction fringes also have an impact.
Nonetheless, the overall uncertainty in OD remains relatively close to the photon shot
noise limit but is not fully constrained by it.

Camera read noise

The read noise for the PCO Panda camera is 2.3 electrons. The signal consists of 40000

photons per pixel, taking into account the calibration of quantum efficiency. Then the
read noise can be calculated by the ratio 2.3

40000 = 0.0000575. The relative contribution
of the read noise to the total measurement noise is extremely small compared to other
noises. In practical terms, the read noise is insignificant compared to the magnitude
of the photon signal and does not contribute significantly to the measurement noise
on our experimental data.

In conclusion, our uncertainty in estimating the diffracted fraction of the population
in one particular shot is 0.010, which is approximately 2.3 times bigger than the ex-
pected atomic shot noise of 0.0043. The contribution to the overall uncertainty comes
from the photon shot noise 0.007 and technical noise. We are experiencing a techni-
cal limitation where the observed photon shot noise is 1.5 times larger than expected.
This discrepancy may result from occasional diffraction fringes in the images or cam-
era setup imperfections. We should be able to approach the standard quantum limit
in the future by improving the camera setup defects and occasional image fringes.
Finally, the camera’s read noise is negligible and does not significantly impact the
measurement noise.
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I
nternal symmetries are fundamental in physics and often correspond to con-
served quantities through principles like Noether’s theorem. Noether’s
theorem states that any continuous symmetry of a physical system’s action
results in a conserved quantity. For example, rotational symmetry leads to
the conservation of angular momentum. In quantum systems, symmetries

can be extended to internal degrees of freedom, such as spin, described by special
unitary groups representing spin rotations.

For instance, Electrons in general exhibit SU(2) symmetry due to their intrinsic spin-
1/2 nature, with two possible spin states. SU(3) symmetry of hadrons led to the
Quark model which describes the origin of the forces that confine the quarks inside
baryons and mesons through the exchange of SU(3) gauge bosons known as gluons
[Bernabeu, 2020]. Graphene exhibits SU(4) symmetry due to its four-fold degeneracy
arising from spin and valley pseudospin degrees of freedom. This symmetry is crucial
for understanding its electronic properties and phenomena like the quantum Hall
effect [Castro Neto et al., 2009]. As the symmetry grows from SU(2) to SU(N), more
phenomena become accessible.

The generalization of SU(2) to SU(N) results in a larger spin symmetry, indicat-
ing that all spin states are treated equally under this symmetry. In the presence of
SU(N) symmetry, spin-exchange interactions that typically drive spin dynamics are
suppressed, resulting in static spin states. This suppression provides a platform for
exploring quantum magnetism, as systems with SU(N) symmetry can exhibit exotic
magnetic phases, offering insights into many-body quantum behavior and strongly
correlated systems. This generalization of the symmetry can be investigated using a
perturbative approach through a parameter 1/N where N is the large spin degeneracy
N=2F+1 [Affleck and Marston, 1988]. For instance, 1/N expansion of the Kondo lattice
problem exhibits how local spin fluctuations are enhanced by large spin degeneracy
[Coleman, 1983]. Furthermore, SU(N) symmetry offers a great opportunity to deal
with the problems like unconventional quantum magnetism and high TC supercon-
ductivity [Marston and Affleck, 1989]. However, in this context, the SU(N) symmetry

80
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is often considered a purely mathematical construct. In contrast, the SU(N) symme-
try is naturally present within the nuclear spin degrees of freedom of fermionic AEA.
Therefore, it offers an excellent experimental foundation for exploring the basics of
particle physics and numerous intriguing issues in condensed matter physics within
the laboratory.

For instance, in the ground state 1S0 of 87Sr, electronic degrees of freedom does not
have the spin and orbital angular momentum (J=0). The nuclear spin (I=9/2) is thus
decoupled from the electronic spin because the hyperfine interactions are absent. The
electronic-nuclear spin decoupling imposes the condition that the scattering lengths
involving 1S0 state should be independent of the nuclear spins. Under these condi-
tions, the interactions are expected to exhibit SU(N) spin symmetry, where N = 2F+1.
In the case of Fermionic 87Sr N=10. For the 1S0 state, it has been theoretically esti-
mated that the relative variation of the scattering length for the various nuclear spin
components should be of the order of δas/as ∼ 10−9 [A. V. Gorshkov et al., 2010].
Spectroscopy using a clock transition 1S0 ↔3 P0 has been used to investigate SU(N)
symmetry of 87Sr. The result observed a SU(N) symmetry breaking to be below 3%
[Zhang et al., 2014].

In this chapter, I will present a brief discussion of short-range interactions in ultra-
cold atoms. I conclude that at low temperatures, mean-field interactions dominate
the scattering processes. Thus, we investigate the energy shift resulting from these
interactions. I will demonstrate our scheme to probe SU(N) symmetry within the
ground state 1S0 of 87Sr with the help of a Ramsey interferometer encoded in the
nuclear spins. First, I will present our preliminary result of an SU(N) symmetry test
in the ground state of 1S0. This experiment involves testing the bulk gas confined in
an optical dipole trap. The observed result shows that SU(N) symmetry breaking is
below 10−2 level. Secondly, to improve our measurement precision, we will increase
the density of the gas by applying additional potential in addition to the optical dipole
trap. In this result, we only observe SU(N) symmetry breaking to be below 10−2 level.
However, I set the future guidelines to increase the precision to 10−3 level.

4.1 interactions in ultracold atoms with internal de-
grees of freedom

Consider a gas with n number of interacting particles at a finite temperature. If
the temperature is low, collisions are dominated by s-wave scattering. Higher angular
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momentum modes, such as p-wave or d-wave, involve centrifugal barriers that require
more energy to activate and are therefore suppressed at low temperatures. The s-wave
scattering cross-section is given by σ = 4πa2s , and the scattering rate is:

Γscatt = nσv = n · 4πa2s · v (4.1.1)

Where v is the relative velocity between particles, as is the s-wave scattering length,
and n is the particle density. The Γscatt define the frequency of the collisions. In
addition, in the Fermionic system, the Pauli exclusion principle necessitates antisym-
metrization of the total wavefunction. For two identical fermions, the total wavefunc-
tion must be antisymmetric under particle exchange:

Ψ(r1, r2) = −Ψ(r2, r1) (4.1.2)

this symmetry implies that for s-wave interactions (symmetric), only antisymmetric
spin wavefunctions need to be taken into account (Stotal = even). Here, Stotal is
the total spin of the interacting particles. Therefore, Fermions in identical internal
states do not display interactions because it is impossible to anti-symmetrize the wave
function in s-wave scattering. On the other hand, the mean-field interaction energy
per particle is given by:

Emf =
4π h2as
m

n (4.1.3)

Where m is the mass of the particle. To define a rate associated with the mean-field
interaction, we divide the interaction energy by reduced Planck’s constant  h, yielding
the mean-field interaction rate:

Γmf =
Emf
 h

=
4π has
m

n (4.1.4)

This rate defines the characteristic frequency of the interaction due to the collective
effect of all particles in the gas. In ultracold gases, Γmf governs the overall interaction
strength in the system, while Γscatt represents the microscopic collision rate between
individual atoms. The ratio of the two rates is given by:
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Γscatt

Γmf
=
as ·

√
3mkBT
 h

(4.1.5)

where T is the temperature of the gas. I have used relative velocity of atoms as the

rms thermal velocity
√

3kBT
m at temperature T . For 87Sr the two rates becomes equal

at about 111 µK. While at 100 nK which is the usual case in our experiment, The ratio
is about 0.03. Therefore, the scattering is suppresssed at this temperature. Hence, we
can neglect the scattering at this temperature. I shall continue further discussion on
mean field interactions.

Pioneering work by [Huang and C. N. Yang, 1957] shows that complicated inter-
atomic potentials are well approximated by the pseudopotential, which is given by:
V(r) = 4π h2as

m δ(r)∂r(r), where r is the relative separation between the colliding par-
ticles. This pseudopotential is applicable to Bosons and spin-1/2 Fermions only. The
generalisation of this pseudopotential to spin-F Fermions is done by [Yip and T.-L. Ho,
1999]:

V̂(r̂) =

2F−1∑
even j=0

4π h2ajs
m

δ(r̂)
∂

∂r
(r)Pj (4.1.6)

where Pj represents the projector onto states with total spin of a pair of Fermions
equal to j = 0, 2,..., 2F-1 because 2F-1 scattering lengths are necessary to character-
ize the interaction between spin-F fermions. The mean field interaction energy per
particle associated with this spin dependent potential can be derived from this spin-
dependent potential as:

Emf ∝
2F−1∑

even j=0

4π h2ajs
m

∫
dxdydzn(x,y, z)2 Pj (4.1.7)

If the particles in the spin state |mF⟩ and |mF′⟩ interact through a potential defined
by 4.1.6. The spin changing interactions are possible because of the spin dependency
of this potential:

⟨mF + δ,mF′ − δ|V̂(r̂)|mF,mF′⟩ ≠ 0 (4.1.8)
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Where δ is to make sure that the total spin is conserved during the process. In con-
trast, if the scattering lengths as are spin-independent, the spin exchange interactions
vanish. The condition leads to SU(N) symmetry for N possible spin states.

Therefore, the mean-field interaction energy 4.1.7 does not acquire the energy shift
for interaction between the different spin channels. We observe that using the gener-
alized pseudopotential simplifies the description of spin-dependent interactions, and
the result emerges as the macroscopic observable in terms of energy shift. The lin-
ear dependence of the energy shift on n(x,y, z) reflects the collective contributions
from collisions within the gas, with each spin channel contributing according to its re-
spective scattering length. This linear energy shift can be probed as a phase shift in a
Ramsey interferometer in our scheme. In addition, spin exchange interactions appears
as the decaying contrast in the interferometer. Therefore, we can measure both effects
(spin exchange and shifts) through contrast and phase in the Ramsey interferometer.

Our experimental scheme for probing the interaction between the nuclear spins in
the ground state manifold 1S0 of 87Sr depends upon the interaction of the qubit state
between the two spin state |mF⟩ ↔ |mF + 1⟩ with the third spin state |mF′⟩ that we
call as impurity state. Qubit interact with the impure spin state and the differential
scattering length δa = amF,mF′ − amF±1,mF′ translates to the phase of the Ramsey
interferometer. Here, |mF′⟩ is the impurity. Asymmetry in the scattering lengths
within the nuclear spin states appears as the phase shift ∆ϕ in the interferometer as
∆ϕ = (∆EmF,mF′

mf −∆EmF+1,mF′

mf )t/ h where t is the interaction time of the qubit with
the impurity. Note that the ∆ϕ is the phase shift between the fringes of the Ramsey
interferometer when the impurity is present or not.

4.2 probing su(n) symmetric collisions within the nu-
clear spins of 87Sr

We measure the differential scattering length to probe the SU(N) symmetry in the
ground state manifold of 87Sr in the following two cases. The first measurement
involves determining the differential scattering length in the bulk Fermi gas within
the optical dipole trap (ODT) alone. In the second case, we increased the density of
the Fermi gas by activating further confinement using a laser beam used to load the
Fermi gas into the 1D optical lattice along gravity.
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4.2.1 Measurement in the bulk gas confined in optical dipole trap

Initially, we prepare a polarized Fermi gas in the spin state |− 5/2⟩. A π/2 pulse of 2.37

ms creates a superposition between the spin state |− 5/2⟩ ↔ |− 3/2⟩ by distributing
approximately half of the initial number of atoms in each spin state. Afterward, the
intensity of beam 1 is ramped down to zero in 2 ms. At this moment, the qubit state
precesses to accumulate phase only in the presence of the external magnetic field. To
probe this qubit, the intensity of the beam 1 is ramped up in 2 ms, and a π/2 pulse
of 2.37 ms is applied. The number of atoms in the spin state | − 5/2⟩ is measured.
The detuning between the two beams is maintained so that the fringe period of the
interferometer is approximately 1 ms. I recorded two sets of data, each containing
80 data points with two fringes per dataset. I took various sets of these datasets for
different dark periods ranging from 10 ms to 2 s. The interferometer data is collected
for two cases. Case one involves probing the bare qubit state |− 5/2⟩ ↔ |− 3/2⟩, while
case two deals with probing the qubit in the presence of impurity, i.e., the spin state
|− 9/2⟩. For all datasets, the Ramsey interferometer has a fringe of about 1 ms. Our
best measurement of the fringe occurs at 2 s of dark time, allowing us to probe the
phase accumulated for 2000 fringes.

4.2.2 Average phase shift due to the mean field interactions

In this sub-section, I aim to calculate the phase shift ∆ϕ in the Ramsey interferometer
initiated by the mean-field interactions. In principle, if the ground state manifold
has SU(N) symmetry, the phase difference should be zero. To calculate the phase
difference, I start by defining an average phase ϕ̄mF,mF′ as a result of the mean-field
interactions between the two spin states |mF⟩ and |mF′⟩ (the phase is the mean-field
energy multiplied by the interferometer time and averaged over the atomic cloud). In
this phase, |mF⟩ is one of the spin states involved in the Ramsey interferometry, and
|mF′⟩ is the spin state for the impurity atoms. To calculate this average phase, I first
start by defining the density profile of the gas in a 3D harmonic trap. The density
nmF′(x,y, z) of a thermal gas in a three-dimensional (3D) harmonic trap for the spin
state |mF′⟩ follows a Maxwell-Boltzmann distribution and is given by:

nmF′(x,y, z) = n0
mF′ exp

(
−

m

2kBT

(
ω2

xx
2 +ω2

yy
2 +ω2

zz
2
))

(4.2.1)
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Where n0
mF′ is the peak density at the center of the trap, m is the atomic mass,

ωx, ωy, and ωz are the trap frequencies along the respective axes, kB is Boltzmann’s
constant, and T is the temperature of the gas. The gas density is distributed spatially
within a finite space. Therefore, the phase associated with the mean-field interactions
takes the spatial dependence:

ϕ(x,y, z) =
4π h2amF,mF′

m

t
 h
nmF′(x,y, z) (4.2.2)

Where t is the interferometer time and amF,mF′ is the scattering length for the inter-
action between the spin states |mF′⟩ and |mF⟩. Moving on, I define the ratio f such that

f =
nmF′(x,y,z)
nmF(x,y,z) =

n0
mF′

n0
mF

. This ratio is valid because both the spin species are confined
in the same trap and have the same temperature profile. Then, the average phase due
to the interaction between the two spin species is given by:

ϕ̄mF,mF′ =
1

NmF

∫
nmF(x,y, z)ϕ(x,y, z)dxdydz (4.2.3)

=
f

NmF

4π h2amF,mF′

m

t
 h

∫
n2
mF(x,y, z)dxdydz (4.2.4)

=
f

NmF

4π h2amF,mF′

m

t
 h

(n0
mF)

2

2
√
2

NmF

n0
mF

(4.2.5)

=
4π h2amF,mF′

m

t
 h

n0
mF′

2
√
2

(4.2.6)

(4.2.7)

If the two spin states involved in the Ramsey interferometer are |mF1⟩ and |mF2⟩,
the total phase difference accumulated δϕ in the interferometer is given by:

∆ϕ = ϕ̄mF1,mF′ − ϕ̄mF2,mF′ (4.2.8)

=
4π h2

m

n0
mF′

2
√
2

t
 h
δa (4.2.9)

Where δa is the differential scattering length δa = amF1,mF′ − amF2,mF′ . After rear-
ranging we get:

δa =
m

4π ht

2
√
2

n0
mF′

∆ϕ (4.2.10)
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and the uncertainty on it:

σδa =
m

4π ht
· 2
√
2 ·

√√√√(∆ϕ · σn0
mF ′

(n0
mF ′)2

)2

+

(
σ∆ϕ

n0
mF ′

)2

(4.2.11)

This expression assumes that the fluctuations in ∆ϕ and n0
mF ′ are uncorrelated. We

now have the expression for the differential scattering length and the uncertainty on
it. For a well-defined interferometer time t, this expression requires the estimation of
the peak density n0

mF′ and the phase difference ∆ϕ of the interferometer. I move on
to the following sub-section to calculate the peak density of the impurity atoms.

4.2.3 Determination of the peak density of the impurity atoms

To calculate the peak density of the impurity atoms, we need to find the total number
of atoms. To find the total number of particles NmF′ , we integrate the density profile
over the entire volume NmF′ =

∫
nmF′(x,y, z)dxdydz. The result of the integration is

given by:

NmF′ = n0
mF′

(
2πkBT

m

)3/2
1

ωxωyωz
(4.2.12)

Thus, the peak density n0
mF′ of the impurity atoms, considering the mean trap

frequency ω̄, is given by:

n0
mF′ = NmF′

(
mω̄2

2πkBT

)3/2

(4.2.13)

where ω̄ is the effective trapping frequency of the optical dipole trap and is the
geometric mean of the angular trapping frequencies ω̄ = 3

√
ωxωyωz along the three

directions.

In order to calculate the peak density of impurity atoms, we need to determine the
temperature T of the gas and the effective confinement frequency ω̄. The temperature
is obtained by analyzing the absorption image of the thermal gas presented in the
figure 25 (a). To extract the temperature, a two-dimensional Gaussian function is
fitted, as shown in 25 (b). This fitting function is given by:
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Figure 25: Temperature calculation for the 3D Gaussian gas inside the optical dipole trap’s
harmonic potential. Figure (a) shows an absorption image in 50 by 50 pixels fol-
lowing a 5-ms time of flight (TOF) experiment. Figure (b) shows a 2D Gaussian fit
on the figure (a) to extract Tx and Ty. Figure (c) shows the residuals of the two-
dimensional Gaussian fit.

I(x,y) = A
(

exp
(
−
(x− x0)

2

2σ2x

)
+ exp

(
−
(y− y0)

2

2σ2y

))
+ I0, (4.2.14)

Where A represents the amplitude of the Gaussian, x0 and y0 is the center position
of the Gaussian peak, σx and σy are the standard deviation of the Gaussian width
along the X and Y direction, and I0 accounts for any background noise or offset in the
image. The widths {σx,σy} obtained from this fitting procedure is directly related to
the temperature of the gas as:

σx · Spixel =

√
kB · Tx ·∆t2TOF

m
(4.2.15)

σy · Spixel =

√
kB · Ty ·∆t2TOF

m
(4.2.16)

Where m is the mass of the 87Sr atom, kB is the Boltzmann constant, and ∆tTOF

is the time-of-flight. Since the width is in pixels, the LHS is multiplied by the size of
one pixel Spixel, which is 6.5 µm. With the help of this process, the gas temperature
is determined along the two direction as Tx = 148± 2 nK and Ty = 258± 2 nK. The
temperature along the two axis are different because the gas is not thermalized. There-
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fore, I make an assumption here to take the geometric mean of the two temperature
for further calculation which is T =

√
TxTy = 195± 3 nK.

The next step is to determine the number of impurity atoms N−9/2 inside the gas.
For this, I start by calculating the optical density (OD) of the atomic gas and relate it
to the number of atoms N. Consider the direction of the absorption beam along the
z-axis. The density profile of the gas is given by the equation 4.2.13. Starting from the
Beer-Lambert law dI

I = −n(x,y, z)σdz, we can show that the optical density profile
in xy-plane is given by:

OD(x,y) = log(
I0
I
) = σ

∫∞
−∞ n(x,y, z)dz (4.2.17)

Where I0 is the initial intensity of the beam, and I is the final intensity after the
absorption by a 3D thermal gas with a density profile n(x,y, z). For resonant imaging,
δ = ω −ω0 << Γ (here, δ is specifically the detuning between the laser frequency
ω to the transition frequency ω0), the absorption cross-section σ is given by σ = 3λ2

2π

with λ being the wavelength of the light used for absorption imaging. The integral of
the optical density OD(x,y) over x and y direction leads to:

∫∞
−∞

∫∞
−∞ OD(x,y)dxdy = σn0

(
2πkBT

m

)3/2
1

ωxωyωz
= σN (4.2.18)

Therefore, we can use the absorption image to determine OD(x,y) and then fit it
with a 2D Gaussian along the x-axis and y-axis to directly calculate the area under
the curve, thus obtaining the number of atoms in the gas. The process involves fitting
the absorption images of a mixture two-spin component gas and a single component
gase. In the first case, the image corresponding to a mixture of spin states |− 5/2⟩ and
|− 9/2⟩ is fitted, giving the number of atoms N−5/2 +N−9/2. The N−5/2 is obtained
by fitting the single component gas in the |− 5/2⟩ spin state. The number of impurity
atoms N−9/2 in the |− 9/2⟩ spin state is then obtained by subtracting the number of
atoms in the single component gas from the number of atoms in the mixture of two-
component gas. The estimated number of atoms are N−9/2 = 3000± 100. This number
is the average number obtained from fitting of five pictures.

Moving on, the effective trapping frequency ω̄, the geometric mean of the trapping
frequencies of ODT in the three spatial directions, is calculated based on calibration by
measuring the optical power near the experimental cell. Based on this measurement
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and the geometry of the dipole trap, the trapping frequencies along the three orthog-
onal axes are known. The trapping frequency ω̄ is estimated as ω̄ = 2π 50 rad/s. Our
measurement errors on ω̄ are substantial because the dipole trapping frequencies un-
certainties are particularly sensitive to the crossing of the two dipole trap beams at the
end stage of evaporation. This can have a significant impact on the trap’s geometry; as
a result, there are significant uncertainties when determining the trapping frequencies
straight from the optical power measurement. Based on our calculations, it can be
higher by 2π10s of rad/s and as low as zero. Here, I will use ω̄ = 2π× 50 rad/s for
our estimation, considering the high uncertainties on ω̄.

Putting the values of temperature T , trapping frequency ω̄ and number of atoms
N, the mean density and the uncertainity associated with it is known (4.5± 0.2)×
1016 m−3. This density is however without taking into account the uncertanity in the
ω̄. Considering the uncertanity in our case for ω̄, the density can range from (7.3±
0.2)× 1016 m−3to 0. I will proceed with the tentative density (4.5± 0.2)× 1016 m−3

for this chapter.

4.2.4 Estimation of the phase difference and the uncertainty associated with it

Figure 26 shows the experimental data for estimating the phase difference. The inter-
ferometer data is obtained for the two cases discussed in this section. The figure inset
displays data for two cases. The first case is represented by black circles, indicating
the absence of impurity atoms |− 9/2⟩. The second case is shown with green circles,
signifying the presence of impurity atoms |− 9/2⟩. We notice that the contrast of the
interferometer appears to be lower when impurity atoms | − 9/2⟩ are present. The
reduction, however, is not the contrast reduction in the Ramsey interferometer fringe
but rather because of the change in the ratio of the diffracted cloud to the central
cloud. This occurs in our spin-dependent momentum transfer scheme because the
central cloud contains |− 9/2⟩ atoms. Therefore, the ratio is smaller than that of the
case when there are no impurity atoms. This reduction is constant throughout all the
datasets.

For extracting the phase in both cases, the population in the spin state |− 5/2⟩ is
fitted with the function P−5/2 = Asin(ω(t− t0)+ϕ)+A0 to extract fitting parameters.
The function is fitted such that at t = 0, ϕ lies on the middle of the slope of the fringe
for maximum sensitivity, the middle being approximately at t0. Then, I applied a
resampling technique called Bootstrapping with the help of a Python library [Bradley
Efron and Tibshirani, 1993].
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Figure 26: Main figure: phase difference ∆ϕ in radians plotted as a function of dark time.
Analyzing a single interferometer data set of 2 ms provided one data point in the
figure. The error bars on the data are standard deviations from bootstrapping.
Inset figure: Black dots represent the population in the spin state |− 5/2⟩ without
the presence of the impurity state | − 9/2⟩ while the green dots are in the same
population but with impurity atoms. The time window for the inset figure is 1000

ms to 1002 ms.

In this process, new datasets (resample) of the same size as the original are gener-
ated by randomly selecting data points from the original dataset with replacements.
Every resample is used to fit the model and record the estimated parameters for each
resample of the bootstrap approach. The mean of these fitted parameters represents
the final fitted parameters and the standard deviation of the fitted parameters gives an
estimate of the uncertainty. As a non-parametric approach, bootstrapping is adaptable
and data-driven since it makes no assumptions about the distribution of the dataset.

After performing the process on both cases, the phase difference is ∆ϕ = |ϕ1 −ϕ2|,
where ϕ1 and ϕ2 are the fitted phase in the two cases. The standard deviation on ∆ϕ
is the quadrature sum of the standard deviation of the phase in the two cases. Main
figure 26 plots the phase difference and the uncertainty associated with it.

For the interferometer times {0.01, 1, 1.5, 2} seconds, the phase difference with the
corresponding uncertainty is calculated as {0.15± 0.11, 0.10± 0.16, 0.44± 0.29, 0.15±
0.23} radians. I illustrate how these uncertainties are translated to the energy differ-
ences in figure 27. The standard deviation in Hz equal to the interferometer time is
represented as the grey dashed line in figure representing the linearly growing uncer-
tainty with time. The energy difference in Hz associated with this phase difference is
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Figure 27: Figure left: estimated relative differential scattering length δa
a × 100 plotted as

a percentage for different interferometer times. Figure right: standard deviation
on the measurement of energy difference in Hz vs the interferometer time. Dark
blue dots represent the energy difference. The dashed grey line represents the
baseline where the standard deviation equals the interferometer time. Both the
figure represents the data for interferometer time {0.01, 1, 1.5, 2} s.

given by ∆E(Hz) = ∆ϕ
2π ht , where t is the interferometer time. Since the interferometer

time is well known, the uncertainty on the energy difference is simply uncertainty
on the phase difference divided by the interferometer time. Because of the sub-linear
growth of the phase difference uncertainty, the measurement uncertainty of the energy
difference reduces with t. The blue dots in the figure represent the energy difference
uncertainty for each interferometer time, which is estimated as {1.6, 0.03, 0.03, 0.02} Hz.
In conclusion, the uncertainty in the energy difference is reduced by two orders of
magnitude when the interferometer time is increased by two orders of magnitude. In
all, I report that we can probe an energy difference of the order of 10−2 Hz (precisely
0.02 Hz) at an interferometer time of 2 seconds.

The parameters needed to determine the differential scattering length and its related
uncertainty have been obtained in this subsection. Plugging the values of the average
density of the cloud and the phase difference in the equations 4.2.10 and 4.2.11, we
obtained δa and the uncertainty σδa associated with it for each interferometer time.
In figure 27 on the left, I present these results as the relative percentage δa

a × 100.
I have used the value of the scattering length a for 87Sr as 5.09(10) nm [Martinez
de Escobar et al., 2008]. As expected, we find that at 10 ms, there is a substantial
amount of uncertainty in the measured value of differential scattering length due to
the high degree of uncertainty in the energy measurement. This uncertainty decreases
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with longer interferometer times. The measurement of the relative scattering length
for each interferometer time is {700 ± 500, 5 ± 8, 15 ± 10, 4 ± 6} %. Considering the
measurement done at the interferometer time of 2 s, the estimation of differential
scattering length is 4± 6 %, of the order of 10−2 ± 10−2 %. In conclusion, we observe
the SU(N) symmetry in the ground state 1S0 manifold δa/a within the uncertainty of
the order of 10−2.

Moving on to the following subsection, I will demonstrate how applying an ad-
ditional potential will increase the average density of the gas. This is achieved by
turning on the 1064 nm 1D lattice during the interferometric sequence. The increased
density can result in a more precise measurement of the SU(N) symmetry.

4.2.5 Investigating the phase noise of the interferometer in the dark

Figure 28: The phase noise (in radian) of the interferometer as a function of the dark time for
the spin state |− 5/2⟩.

During the precession of the qubit (phase accumulation of the Ramsey interferom-
eter) only the external magnetic field is present. The fluctuation in the external mag-
netic fields appears as a noise in the phase of the interferometer. The external magnetic
field during the interferometric sequence is produced by the coils that receive the cur-
rent from the power supply Delta Electronika ES150. The current in the power supply
has the relative temperature stability of 10−4. Then the fluctuation in the phase of the
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Ramsey interferometer due to the variation of the ambient temperature is given by the
equation 4.2.19

δϕfield = 2π∆EαT ∆T t/h (4.2.19)

where ∆E is the Zeeman splitting in the ground state manifold due to the external
magnetic field, αT is the temperature coefficient of the driving power supply, ∆T is the
ambient temperature change, and t is the dark time. The δϕfield at 2 s is approximately
1 radians. The fluctuations in the phase of the interferometer due to the stability of
the DDS that drives the two beams is given by the equation 4.2.20

δϕDDS = 2π · δ(ω1 −ω2) · t/h (4.2.20)

where δ(ω1−ω2) is given by the relationship δ(ω1−ω2) = R · (ω1−ω2), R being
the relative stability of the DDS which is 10−5. The δϕDDS at 2 s is approximately 0.1
radian. Hence, the overall technical phase noise of the interferometer is expected to

be δϕ =
√
δϕ2

field + δϕ2
DDS ≈ 1 radian.

The measurement noise in our interferometer is dominated by the phase noise. For
instance, at the darktime of the order of seconds, the phase noise is estimated as
approximately 1 radian as shown in figure 28. Based on the DDS stabilities and the
power sources used to create the magnetic field as previously mentioned, this noise
can be understood. Moreover, the dominating noise comes from the power source
used to create the magnetic field in the experiment. They are purely technical and
can be improved in the future by changing the equipment with better stability. At the
limit of the noise, the estimation of the error in measuring the SU(N) will be minimal.
We have now understood the noise limitations in the dark in our interferometer. I will
now move on to the next section.

4.2.6 Increase of confinement density by an additional potential

When performing the interferometry, the Fermi gas is held in the optical dipole trap.
The density of the gas in the trap is determined by parameters such as the depth of
the optical dipole trap, confinement frequencies in the three orthogonal directions,
and the temperature of the gas. After the evaporation in the optical dipole trap, the
effective confinement frequency is approximately 50 Hz. By adiabatically applying
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an additional potential, we can increase the effective confinement frequency without
introducing excess energy into the system. This can be achieved by using 1064 nm
infrared light, which aims to create a 1D lattice parallel to the direction of gravity. Us-
ing this 1D lattice, the confinement frequency along the lattice’s axis can be increased
significantly by an order of magnitude of two 102. This potential also provides an
additional radial confinement within 10s of Hz. Overall, by combining these two po-
tentials, we can increase the density of the gas. It is worth doing the interferometric
test to probe SU(N) symmetry with this increased density. However, the gas density
is spatially modulated due to the presence of the 1D lattice. Therefore, I shall begin
by describing the theoretical calculation of gas density in the presence of a 1D lattice
before presenting the experimental results in this subsection.

4.2.7 Determination of the differential scattering inside a 1D lattice

Figure 29: Density profile of the gas within each layer of 1064 nm 1D lattice. Left figure: 2D
picture of the density as a function of camera pixel measured after the quantum
gas magnifier experiment. Central figure: the integrated version of the 2D picture
along the axis of the 1D lattice with the sum of the Gaussian fits. Right figure:
estimated fraction of the population of the number of atoms in each layer of the 1D
lattice, calculated from the central picture.

The combination of the 1064 nm lattice and the optical dipole trap creates multiple
layers of quasi-2D gas in a plane perpendicular to the direction of the lattice beam. A
projection of this configuration along the line of sight of the imaging beam is shown
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in the left inset figure 29. Within each quasi-2D layer, the gas density profile can be
considered equivalent to a thermal gas in an anisotropic harmonic potential. For a
thermal gas confined in an anisotropic harmonic potential, the density distribution
depends on the temperatures and the trapping frequencies along the three perpen-
dicular directions. In this configuration, the radial temperature along the two radial
axes of the lattice is similar (I assume the gas to be thermalized), while the axial tem-
perature is different. I define the two temperatures as Tr and Tz. Tr represents the
temperature across the radial direction (perpendicular to gravity), while Tz represents
the temperature along the axial direction (aligned with gravity). The temperatures
Tr and Tz are measured by time-of-flight experiments and correspond to the kinetic
energy spread in the radial and axial directions, respectively.

I start by calculating the peak density of a thermal gas in an anisotropic harmonic
potential. Lets assume there are several number of quasi-2D layers. For i’th layer, the
density profile n(i)

mF(x,y, z) of the gas in the spin state |mF⟩ is given by:

n
(i)
mF(x,y, z) = n0,(i)

mF exp
(
−
mω2

r(x
2 + y2)

2kBTr

)
exp

(
−
mω2

zz
2

2kBTz

)
(4.2.21)

Here, n0,(i)
mF is the peak density of the gas in the i’th layer at the location (x,y,z)=

(0,0,0). ωr and ωz are the global angular trapping frequencies in the radial and axial
directions respectively. The trapping frequencies result from the combination of the
two beams and are given by ωr =

√
ω2

r,1064 +ω
2
r,ODT and ωz =

√
ω2

z,1064 +ω
2
z,ODT .

Then, we can calculate the total number of atoms N(i)
mF in each layer by integrating the

density over the 3D space N(i)
mF =

∫
n
(i)
mF(x,y, z)dxdydz. After rearranging, the peak

density of the 3D gas Gaussian gas for the spin state |mF⟩ in each layer at the center
of the anharmonic trap is then given by:

n
0,(i)
mF =

N
(i)
mF ·m

3/2ω2
rωz

(2π)3/2k
3/2
B TrT

1/2
z

(4.2.22)

I will use this expression later in this sub-section. Now, I will determine the total
phase shift ∆ϕ in the Ramsey interferometer due to the mean-field interactions. The
density inside each layer varies as a function of (x,y,z). Therefore, the phase of the
Ramsey interferometer initiated by the mean-field interaction between the impurity
atoms |mF′⟩ and the atoms in the spin state |mF⟩ also varies as a function of (x,y,z).
Hence, I will calculate the average phase due to the mean-field interactions.
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Given that the atoms are distributed across several layers labeled as i, let the frac-

tion of atoms in the i’th layer be given by fi =
N

(i)
mF

NmF
=

n
0,(i)
mF

n0
mF

. Here, NmF
is the total

number of atoms in the spin state |mF⟩, and n0
mF

is the peak density if all the atoms
are in one layer. Further, I assume each layer has the same temperatures Tr, Tz, and
the trapping frequencies ωr and ωz. The total phase difference accumulated in the
Ramsey interferometer is ∆ϕ = ϕ̄mF1,mF′ − ϕ̄mF2,mF′ . Where ϕ̄mF{1,2},mF′ is the aver-
age phase due to the inter-species mean field interaction between either of the spin
states {|mF1⟩, |mF2⟩} and the impurity atoms |mF′⟩. Then, the average phase difference
∆ϕ over the entire configuration is given by:

ϕ̄mF,mF′ =
∑
i

N
(i)
mF

NmF

ϕ̄
(i)
mF,mF′ =

∑
i

fi ϕ̄
(i)
mF,mF′ (4.2.23)

ϕ̄
(i)
mF,mF′ represents the average shift in each layer and is given by:

ϕ̄
(i)
mF,mF′ =

1

N
(i)
mF

∫
dxdydzn

(i)
mF(x,y, z)

4π h2amF,mF′

m

t
 h
n
(i)
mF′(x,y, z) (4.2.24)

=
gt
 h

1

N
(i)
mF

fj

∫
dxdydzn

(i)
mF

2
(x,y, z) (4.2.25)

=
gt
 h

n0
mF

2
√
2
fifj (4.2.26)

where, I have defined fj is the fraction of number of atoms fj =
NmF′
NmF

=
n0

m′
F

n0
mF

=

n
(i)

m′
F
(x,y,z)

n
(i)
mF

(x,y,z)
in the impurity spin state |mF′⟩ and the spin state |mF⟩. The coupling

constant g is given by g =
4π h2amF,mF′

m . Then, using the equation 4.2.23, the average
shift for all the layers is simply:

ϕ̄mF,mF′ =
gt
 h

n0
mF

2
√
2
fj

(∑
i

f2i

)
(4.2.27)

and the total phase difference accumulated in the Ramsey interferometer is given
by:
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∆ϕ = ϕ̄mF1,mF′ − ϕ̄mF2,mF′ (4.2.28)

=
4π h2

m

t
 h

n0
mF′

2
√
2

(amF1,mF′ − amF2,mF′)

(∑
i

f2i

)
(4.2.29)

=
4π h2

m

t
 h

n0
mF′

2
√
2
δa

(∑
i

f2i

)
(4.2.30)

In this equation, n0
mF′ is the peak density of the impurity atoms if all the atoms are

in one layer. Here, I have used the fact that fj · n0
mF = n0

mF′ . Thus, the total average
shift is proportional to the peak density of the impurity atoms, the sum of the squares
of the fractional populations fi in each layer, and the differential scattering length δa.
Finally, the differential scattering length δa and the uncertainty σδa associated with it
is given by:

δa =
m

4π h

1

t

2
√
2

n0
mF′

∆ϕ

(∑
i

f2i

)−1

(4.2.31)

and

σδa =
m

4π ht

2
√
2

n0
mF′

(∑
i f

2
i

) ·
√√√√σ2∆ϕ +

(
∆ϕσn0

mF′

n0
mF′

)2

+
∑
i

(
−2fi∆ϕσfi(∑

i f
2
i

) )2

(4.2.32)

In order to calculate the differential scattering length δa and the uncertainty σδa
on it, we need to estimate fi, ∆ϕ and n0

mF′ . Let’s begin by calculating the fraction of
atom fi in each layer.

As shown in the inset figure 29 left, the quantum gas magnifier experiment [Asteria
et al., 2021] reveals the fraction of population of atoms in each layer for the combina-
tion of 1064 nm 1D lattice and ODT. First, I integrated the pixels of this picture along
the direction of the 1D lattice to produce a 1D array of integrated pixels, represented
by the central plot in this figure. Then, this plot is fitted with the sum of 1D Gaussians
given by:
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I(x) = I0 +
∑
i

Ai exp
(
−
(x− µi)

2

2σ2i

)
(4.2.33)

Where I(x) represents the integrated optical depth, and I0 is the background
noise.The number of atoms in the i’th layer centered at µi (here µi and x are in pix-
els) is proportional to the Ai · σi. The fraction of atoms in the i’th layer is given by
fi = Ai·σi∑

i Ai·σi
. The bar graph in the right inset bar graph represents the fraction of

atoms in each layer. After determining the fraction of atoms in each layer, we can
proceed to calculate the peak density of the impurity atoms.

Furthermore, the kinetic energy K of a 3D Gaussian gas in an anisotropic trap can be
calculated using the equipartition theorem. In 3D, the average kinetic energy per par-
ticle is 3

2kBT , however, the temperatures differ along radial Tr and axial Tz directions.
The total kinetic energy for N atoms is given by K = 1

2N (2kBTr + kBTz). Similarly,
the potential energy U in a harmonic trap follows the equipartition theorem. Each di-
rection contributes 1

2kBT per particle, resulting total kinetic energy equal to the total
potential energy:

K = U =
1

2
N (2kBTr + kBTz) (4.2.34)

Therefore, if the kinetic energy is measured by observing the momentum spread
in a time-of-flight (TOF) experiment, the potential energy can be directly inferred, as
they are identical. This equality simplifies the analysis of such systems, allowing one
to determine the total energy distribution by measuring either the kinetic or potential
energy.

Since the effective potential of the 1064 nm 1D lattice and the optical dipole trap is an
anharmonic trap, it is essential to determine the temperature along different spatial
directions. The temperature of the gas can be extracted by fitting a 2D Gaussian
function to the spatial distribution of the optical depth in the absorbtion image. The
process begins with obtaining the 2D Gaussian fit to the spatial distribution of the
thermal gas after it has expanded during a time-of-flight (TOF) of 5 ms. Here, I assume
that the gas is thermalized so that the temperature along the plane perpendicular to
the gravity axis (along z) are same, meaning Tx = Ty = Tr and I shall denote these
temperature by Tr. The widths of the Gaussian fit along the z and r axes, denoted as
σz and σr, respectively, are directly related to the temperature of the gas along those
axes. These parameters are derived from the fitted 2D Gaussian model:
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Figure 30: Temperature calculation for the 3D Gaussian gas inside the optical dipole trap’s
harmonic potential. Figure (a) shows an absorption image in pixels following a
5-ms time of flight (TOF) experiment. Figure (b) shows a 2D Gaussian fit of the ab-
sorbtion image in figure (a) to extract Tz and Tr along their respective axes. Figure
(b) shows the residuals of the two-dimensional Gaussian fit.

I(z, r) = I0 +A exp
(
−

(
(z− z0)

2

2σ2z
+

(r− r0)
2

2σ2r

))
(4.2.35)

In this model, σz and σr correspond to the standard deviations of the Gaussian
distribution along the z and r directions, respectively. These widths capture the spatial
spread of the gas after expansion, reflecting the underlying velocity distribution of the
atoms. Furthermore, I(z, r) is the optical depth in the absorbtion image and A is the
amplitude of the Gaussian fit. Once σz and σr are obtained from the 2D Gaussian fit,
they are used to calculate the temperatures Tz and Tr along the respective axes z and
r by the relationships:

Tz =
σ2v(z) ·m
kB

=
σ2r(z) ·m ·

(
Spixel

)2
kB (∆tTOF)

2
(4.2.36)

and

Tr =
σ2v(r) ·m
kB

=
σ2r(r) ·m ·

(
Spixel

)2
kB (∆tTOF)

2
(4.2.37)
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σz and σr are the Gaussian widths obtained from the fit in the position space, m
is the mass of a single 87Sr atom, kB is the Boltzmann constant, Spixel is the size of
a pixel in the image and is 6.5 µm, and ∆tTOF is the duration of the time-of-flight
expansion. To convert Gaussian width from velocity to position space, we use the
formula σ2v{z,r} = σ2r{z,r} ·

(
Spixel

)2
/ (∆tTOF)

2. From this analysis the temperature
Tz = 830± 5 nK and Tr = 720± 5 nK are known.

4.2.8 Measurement of the depth of 1064 nm 1D lattice

In order to finally calculate the peak density n0
mF′ of the impurity atoms inside the

trap, we need ωz,1064 and ωr,1064. Which can be calculated from the depth of the
1064 nm lattice V1064. Where ωz,1064 is the harmonic oscillation frequency ωz,1064 =

2
√
V1064Er/ h. V1064 is the lattice depth and Er is the recoil energy associated with

lattice. We turned on the lattice with a square pulse with a duration τ to determine
the lattice depth at 1064 nm. After the square pulse, the TOF experiment is performed.
The potential energy of the atoms is fully converted into kinetic energy, leading to
a spread in momentum that is measured after TOF. In our experiment, atoms are
confined in a one-dimensional optical lattice. Therefore, we need to measure the
momentum spread in one direction only. The spatial spread ∆x of the atomic cloud
after TOF ∆t, related to the velocity spread ∆vmax by ∆vmax = ∆x/2∆t, allows us to
calculate the maximum kinetic energy and hence infer the lattice depth:

V1064 =
1

2
m∆v2max (4.2.38)

For deep lattice potentials, where V1064 ≫ ER (with ER being the recoil energy ER =
 h2k2

2m ) of the lattice, the energy bands become very flat, and the motion of the atoms is
primarily confined to the bottom of the potential wells. In this regime, the potential at
each lattice site can be locally approximated by a harmonic potential V1064(x ≈ xi) ≈
1
2mω

2
z,1064

(x− xi)
2 [Gerbier, 2015], where ωz, 1064 is the band gap from the lowest to

the first excited band (equal to harmonic oscillation frequency), and xi represents the
positions of the lattice minima. The band gap ωz, 1064 is then given by:

ωz, 1064 =
2
 h

√
V1064ER (4.2.39)
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Figure 31: Measurement of lattice depth V1064 using TOF experiment. Figure (a) depicts the
momentum spread of the gas after a 5 ms TOF in pixels, with each pixel measuring
6.5 µm. Figure (b) depicts the raw image from the experiment used to generate
Figure (a). In both cases, each image is the average of five images taken in random
order and merged to show the dynamics.
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This indicates that the local curvature of the lattice potential is directly related to
the lattice depth and the recoil energy. Finally, the radial trapping frequency can be
estimated using a straightforward relation of the potential energy of the harmonic
oscillator:

ωr, 1064 =

√
4V0

mw2
(4.2.40)

where w is the Gaussian beam waist, governs the confinement in the transverse
direction. This frequency, along with the band gap and lattice depth, characterizes the
overall dynamics of atoms in the lattice and are needed for the calculation of the peak
density n0

mF′ of the atoms inside the trap.

The experimental result of the lattice depth measurement is shown in Figure 31.
The dynamics of momentum spread as a function of lattice pulse time are plotted
vertically in pixels. The lattice depth is given by the maximum momentum spread,
which is the maximum potential energy in the lattice. Each picture is taken after 5

µs to capture the dynamics. The lattice depth using the relation 4.2.38 is calculated
as V1064 = 92 kHz. Then using the relations 4.2.39 and 4.2.40, the band gap and the
radial confinement frequency is {ωz, 1064,ωr, 1064} = {7000, 45} Hz.

Based on the calculation of these frequencies, the effective trapping frequencies in
the presence of 1D lattice are approximately {ωr,ωz} = 2π{7000, 67} rad/s. With the
knowledge of temperature estimated in the earlier subsection, The average density
n0
mF′/2

√
2 of the impurity atoms is known (9.3± 0.3)× 1017 m−3. The density is one

order of magnitude higher than the density of the bulk gas. Our next goal is to find
the phase difference ∆ϕ to estimate the differential scattering length.

4.2.9 Estimation of the phase difference in the presence of a 1D 1064 nm lattice

Figure 32 shows the experimental data of the interferometer done in the presence of
the 1D 1064 nm lattice. The experiment is repeated five times, and each data point
in the figure represents the interferometer’s output for a time window ranging from
1000 ms to 1002 ms. Each interferometer dataset is obtained for the two cases shown
by the inset figure. The first case is represented by black circles, indicating the absence
of impurity atoms |− 9/2⟩. The second case is shown with green circles, signifying
the presence of impurity atoms |− 9/2⟩. For extracting the phase, I applied the same
analysis used for phase estimation in the bulk gas. After performing the analysis, the
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Figure 32: Main figure: phase difference ∆ϕ in radians plotted as a function of experimental
trials. Analyzing a single interferometer data set of 2 ms provided one data point in
the figure. The error bars on the data are standard deviations from bootstrapping.
Inset figure: Black dots represent the population in the spin state |− 5/2⟩ without
the presence of the impurity state | − 9/2⟩ while the green dots are in the same
population but with impurity atoms. The time window for the inset figure is 1000

ms to 1002 ms. All the datasets are taken for the same time window.

phase difference is ∆ϕ = |ϕ1 −ϕ2|, where ϕ1 and ϕ2 are the fitted phase in the two
cases. The standard deviation on ∆ϕ is the quadrature sum of the standard deviation
of the phase in the two cases. The phase difference and the associated uncertainty for
each dataset are obtained as {0.18± 0.25, 0.11± 0.21, 0.29± 0.29, 0.21± 0.23, 0.60± 0.27}
radians. The main figure 32 plots the phase difference and the uncertainty associated
with them.

Now, we have found all the necessary parameters to estimate the differential scatter-
ing length and the uncertainty associated with it. Plugging all the parameters in the
equations 4.2.31 and 4.2.32 the desired result are estimated. Figure 33 shows the esti-
mated results. We observe that our results δa

a × 100 ranges roughly from (2− 10)± 5%.
Here, I have taken the upper limit of the uncertainties of the datasets as a global un-
certainty. We also observe that this result exhibits the same level of precision as the
result of the SU(N) symmetry test in the bulk gas. The reason being the differential
scattering length scales with modified effective density as δa ∝ 1

n0
mF′

∑
i f

2
i

. We effec-

tively increase the term (modified density) n0
mF′

∑
i f

2
i by a factor of two. The reason

was that the temperature of the gas in the 1D lattice was high (which can be fixed
by loading the gas adiabatically in the lattice). However, in contrast to the bulk gas
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Figure 33: The differential scattering length and its associated uncertainty in the presence of
a 1064 nm 1D lattice. The results are presented as the relative percentage δa

a × 100,
where a is the scattering length for 87Sr.

case, these results are more reliable because we have measured the lattice depth (con-
finement frequencies) directly in the experiment. Furthermore, the standard deviation
on the mean of each dataset giving δa

a × 100 is about 5%, where the standard devi-
ation on each dataset is roughly 4.5%. Since the standard deviation in the mean of
each dataset is comparable to the standard deviation on each dataset, I can’t take the
average of these datasets. Based on these findings, I can state that we have seen the
relative differential scattering length δa

a × 100 values scattered between +5 to -10 with
error bars of nearly ±5%.

4.3 final thoughts and future outlook

I have presented the results for probing the SU(N) symmetric interactions within the
nuclear spin in the ground state manifold. We noticed that the differential scattering
length is inversely proportional δa ∝ 1/n0

mF′ to the peak density of the impurity atoms
in the trap. Thus, increasing the density with the help of the tighter trap has more
precision in the estimation of δa. I presented a preliminary result where I gained a
factor of two in the density of the impurity atoms n0

mF′ . However, due to the diabatic
loading of gas in the 1D lattice, I failed to achieve expected (one order of magnitude
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more) precision in the measurement of the differential scattering length δa. Overall,
I have have tested the SU(N) symmetry with no breaking within the experimental
relative uncertainty of around 10−2. Furthermore, the noise is ultimately bigger while
compression was performed.

In the future, I could point out a few procedures that could result in more pre-
cise measurements of the differential scattering length δa. For instance, during the
interferometer, the gas can be re-compressed in the ODT to a full intensity which pro-
vides an effective confinement frequency of approximately 200 Hz. This frequency
can be directly measured in the experiment by an experiment like parametric heating
by modulating the laser intensity of the position of the trap to increase the reliability
of the data. It is possible to load the gas within approximately two quasi 2D layers
of the 1064 nm 1D lattice giving

∑
i f

2
i as 0.5. With these steps, it will be possible to

increase the density of the gas inside the 1064 nm by an order of magnitude more than
present. Moreover, taking more data points or repeating the dataset for the same dark
time will increase the precision of the estimation of ∆ϕ. I have presented the same by
repeating the same dataset five times. For instance, on a given day the dataset can be
repeated as much as 10 times which will increase the precision on ∆ϕ by

√
10 times.

With only these three steps, we can lower the precision on δa by roughly a factor of
30. Furthermore, we can minimize the phase noise of the interferometer by upgrading
the DDS and power supplies to enhance their stability. With technical enhancements,
improved density, and greater sensitivity in the phase of the interferometer, we can
achieve a precision of 10−3 in probing the SU(N) symmetry.

Furthermore, our qubit coherence time is of the order of the lifetime of the
Fermi gas, Ramsey interferometer visibility is not limited by the incoherent pro-
cesses. Our measurement is at optimum precision in terms of the visibility
of the interferometer without the need for schemes like dynamical de-coupling.
*****************************************************************



C O N C L U S I O N

In this thesis, I have experimentally demonstrated the preparation and control over
two isolated nuclear spins from the ground state manifold by optical methods. In
the future of our experiment, this approach paves the way for simulating the 2D
Fermi-Hubbard model with enhanced SU(N) symmetry using 87Sr. In addition, I have
also demonstrated that 87Sr can be employed for high-dimensional interferometry,
enabling access to physical quantities that are beyond the reach of standard two-state
interferometry. Furthermore, we can test the SU(N) symmetry of 87Sr itself. This
thesis utilizes the large spin symmetry of 87Sr and the long coherence of its nuclear
spins. These are among the key requirements in the fields of quantum simulation,
quantum computing, and metrology. Therefore, the studies done in this thesis can be
applied in such fields.

In the first chapter I have presented manipulation of the nuclear spins by optical
methods. I started by experimentally demonstrating the tensor light shifts which is
in good agreement of my theoretical calculations. Then, I demonstated the Raman
adiabatic passages with 80% one way efficiency limited by amplified spontaneous
emission. During these experiments we noticed the anomalous heating on the Fermi
gas that is coming from the laser that is used to create the tensor light shift, I confirmed
this result by setting up a temporary filtering cavity.

When the adiabatic passages are realized inside the optical lattices, we will be
able to write spin textures. It will then be possible to adiabatically approach the
regime where many-body interactions are dominated by super-exchange mechanism,
by slowly reducing the depth of the spin-dependent superlattice. This requires load-
ing the Fermi gas inside the 3D optical lattice which is the combination of 1064 nm 1D
lattice plus 532 nm 2D lattice. During the second year of my thesis, I worked on load-
ing the gas in the lattice. I measured the excessive heating by an order of magnitude
more than the expected one of the gas inside the 532 nm lattice. To solve this issue,
we are currently preparing the active intensity stabilization to reduce the RIN.

I experimentally demonstrated coherent Rabi oscillations between three isolated
pairs of nuclear spin states. In principle, it is possible to couple any two neighboring
pairs of nuclear spin states within the entire ground state manifold. The next question
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is how long is the coherence of the two isolated pairs and what is the dominant limita-
tion? I was able to increase the coherence time of these Rabi oscillations by increasing
the beam waist. Finally, I was able to achieve Rabi oscillations with a quality factor
of nearly 100. Furthermore, I was able to demonstrate the coherent Rabi oscillation
between the spin states |mF⟩ and |mF+ 2⟩. This way I showed the two different pairs
possibilities to control the spins by optical methods. The advantage of controlling spin
states |mF⟩ and |mF+ 2⟩ is that both the spin states can be measured simultaneously.
This opens the door to measuring the correlations between the measured spin states.

The next chapter is dedicated to the high-dimensional interferometry with nuclear
spins with long coherence. I have demonstrated two experimental applications of high-
dimensional interferometers. The first one is a combination of two parallel Ramsey
interferometers that run simultaneously. We can separate the two types of measured
fields, tensor light shift and the linear field which is the combination of vector light
shift and linear Zeeman shift. The second interferometers measure two or more col-
lective atomic variables simultaneously. This can be one of the ways to measure the
correlations between these two variables. One advantage of this interferometer is that
we do not require standard tomography of the spin states to measure the correlations.

Furthermore, I identified the main sources of the phase noise in our interferome-
ters. I was able to reduce the phase noise significantly such that direct fitting of the
data with the model provides the estimation of parameters with reduced chi-square
reaching one. In addition, we measured the coherence of the qubit in the presence
of the tensor light shift. The next question was how long is the coherence of the su-
perposition of the nuclear spins when the tensor light shift is not present? As we
expected, the coherence is maintained as long as the lifetime of the Fermi gas itself.
I also pointed out that our measurement precision has not yet reached the standard
quantum limit, but is approaching it.

In the last chapter, I have presented a scheme to test the SU(N) symmetry for 87Sr

based on the Ramsey interferometer. The scheme exploits the long coherence time of
nuclear spin superpositions, which remain highly isolated from environmental per-
turbations. The precision of SU(N) symmetry measurements is inversely proportional
to the density of impurity atoms. I attempted to increase the density of the gas with
the help of a 1D 1064 nm lattice. Our first result is tentative and it necessitates pre-
cise measurement of the trapping frequencies in the optical dipole trap to improve
the reliability of the outcome. Therefore, the next step is careful measurements of
the trapping frequency of the optical dipole trap, which can be measured directly in
the experiment. Additionally, by loading the gas into a 1064 nm 1D lattice and using
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re-compression of the gas inside the dipole trap, achieving a precision of 10−3 in the
SU(N) symmetry test should become straightforward. I’ve shown that the phase noise
in our interferometer data is purely technical and can be reduced with a more stable
power supply, which will further increase the precision of the estimation of the phase
of the interferometer fringe.
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Heinz, A., A. J. Park, N. Šanti ć, J. Trautmann, S. G. Porsev, M. S. Safronova, I. Bloch,
and S. Blatt

2020 “State-Dependent Optical Lattices for the Strontium Optical Qubit,” Phys. Rev.
Lett., 124 [20 May 2020], p. 203201, doi: 10.1103/PhysRevLett.124.203201,
https://link.aps.org/doi/10.1103/PhysRevLett.124.203201.

Heinz, André, Annie Jihyun Park, Neven Šantić, Jan Trautmann, SG Porsev, MS
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