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Introduction

The idea of Bose-Einstein condensation dates back to 1925 where A.Einstein, on the basis of a paper by the
physicist S.N. Bose, predicted the occurrence of a phase transition in a gas of non-interacting atoms. This phase
transition is associated with the condensations of atoms in the state of lowest energy and is the consequence of
quantum statistical effects. The experimental studies on dilute atomic gases were developed much later, starting
from the 1970s, enabled by the development in atomic physics of new techniques based on magnetic and optical
trapping and advanced cooling techniques.

The development of these techniques led to the realisation of a Bose Einstein Condensation (BEC) in 1995.
The achievement of BEC, and its early experimental studies, led to the Nobel Prize in Physics in 2001 for E.A
Cornell, W. Ketterle, amd C.E. Wieman. The atoms in a BEC have the same quantum mechanical properties
and can be treated as one entity. One of the reasons why BECs are so attractive is that they can be observed for
seconds, manipulated, shaken, without losing their quantum properties. BEC is therefore one ideal candidate
for quantum physics experiments.

After BEC was obtained at JILA in Boulder, and at MIT, with alcaline atoms followed by many others, a
chromium BEC was obtained in Stuttgart in 2005 [1]. In 2006 at LPL in Paris, a simultaneous Magneto-Optical
Trap (MOT) of Bosonic and Fermionic atoms was produced [2]. While the Fermion species was set aside, and
producing a Fermi Sea of chromium will be a main task of my PhD, the bosonic species was condensed in 2008
[3].

The goal of my work was to produce an optical dipole trap for the BEC of 40µm waist horizontally and 10µm
waist vertically. This configuration should lead to a quasi 2D gas, and should give a BEC’s size bigger than the
spin healing length in the strong confining direction. This should likely lead to the formation of spin domains
which we would like to observe, necessitating the production of a new imaging system capable of observing the
atomic spin. In this report, I will explain why chromium was chosen to be condensed and I will present the
latest work that the Laboratoire de Physique des Lasers team has produced. Then I shall explain how to create
an optical dipole trap and give our optical dipole trap characteristics. Finally I will describe the actual imaging
system before a detailed study of the new imaging system which will be in situ, non destructive, and able to
probe spin domains.
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1 Studiying Magnetism with Chromium

Chromium was first condensed [1] 10 years after the first BEC. In this section I will introduce the main
properties of chromium. Then I will talk about the research done at LPL in Quantum Dipolar Gas (QDG)
team.

1.1 Chromium

Chromium is not an alkali, like most of the atoms in BEC experiments, it is situated on the 6th column of the
periodic table and therefore should have more than one valence electron. Actually, the electronic structure of
Chromium is an exception to the standard filling rules: the 3d subshell is only half full and there is one electron
is the subshell 4s ([Ar]3d54s1). Chromium therefore has 6 valence electrons and its spin is S = 3. One may ask
the point of having 6 electrons, since the physics of atoms with 1 electron is already complicated enough. The
answer is that with 6 electrons, the magnetic Dipole Dipole Interactions (DDI) are no longer negligible. Indeed,

the dipole of an atom presents a magnetic moment proportional to its spin ~µ = gSµB ~S (with gS the Landé

factor, µB Bohr’s magneton, and ~S is the spin angular momentum) which creates a magnetic field ~B who will
exercise a force on the other dipoles. The interaction potential between two particles separated by ~r is:

Vdd(~r) =
µ0(gSµB)2/(4π)

r5

(
r2 ~S1. ~S2 − 3( ~S1.~r)( ~S2.~r)

)
. (1)

This expression explicitly contains the two main features of DDI. The interaction is anisotropic since it
depends on the respective orientations of the moments ~µi and ~r. Figure 1 is a scheme illustrating the anisotropy.

Figure 1: Scheme of Dipole Dipole Interactions. The interaction is repulsive for 2 atoms in a plane orthogonal
to ~B and attractive if they are aligned along ~B.

The other feature is that the potential is in r−3, which is a long range potential.
DDI interactions are 36 times stronger than for an alkali, but it is still a weak interaction compared to the

contact potential even for Chromium:

εdd =
Vdd

VContact
≈ 0.159 . (2)

Though these interactions are weak, they are capable of coupling two atoms in different lattice sites (distance
of a few hundred nm) and therefore lead to physics unattainable with alkali atoms.
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1.2 Chromium at LPL

Laburthe et al. measured the effects of DDI thanks to the anisotropy of the interactions: for 2 orthogonal
directions of the magnetic field, the interactions go from attractive to repulsive and modified the hydrodynamic
properties of the condensate ([4],[5]). Then they turned their attention to magnetism, studying the low tem-
perature phase diagram including the spin degrees of freedom [6]. Finally they set up an optical lattice in
which they charged the BEC and studied the dynamics of magnetization [7]. A BEC with DDI in a lattice
is particularly interesting since the hamiltonian of such a system is analogous to the Heisenberg hamiltonian.
The spin-spin interactions being modelled by the long range DDIs. Therefore by studying the results of the
dynamics of the system, we have access to the N-body Heisenberg problem. It is therefore possible to investigate
such many-body problems related to quantum magnetism, which is particularly interesting as these problems
are theoretically intractable due to many particle correlations.

The goal of my internship is to produce an optical dipole trap of specific size (40µm horizontally and 10µm
vertically). These trapping dimensions will create a 2D electron gas. The study of such a system is very
interesting since new features which significantly modify the behaviour of the system. Our gaz is predicted to
have spin domains and a 2D system will ease it’s observation. The second part of my internship is to produce
a non destructive spin sensitive in situ imaging system. Such an imaging system will be necessary to observe
the spin domains. Future work will install lattices on the 2D gas. We will then be in the conditions of the
Heisenberg hamiltonian and we will be able to observe spin dynamics of our system.

In the next part I will introduce optical dipole traps and give the characteristics of our trap with a beam
waist of 40µm horizontally and 10µm vertically. In section 3 I will discuss the different characteristics of our
imaging system.
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2 Optical dipole traps

To be able to manipulate atoms a practical tool is light. Laser light can produce optical potentials up to a
few mK. These Depths are just above typical Doppler temperatures, the limit temperature obtained by Doppler
cooling, which range from 100µK to mK. Optical traps can be used on laser cooled atoms and we can proceed
to evaporative cooling [8] to obtain BEC.

In this section I will introduce the concepts of atom trapping with an optical dipole trap, through a classical
model which will enable us to introduce the polarisability. I will then give a quantum approach . For a thorough
study of dipole trapping theory one should refer to [9]. Finally I will present the different characteristics of our
trap.

2.1 Classical model

When an atom is illuminated by laser light, the electric field ~E induces an atomic dipole moment ~d which
oscillates at the driving frequency ω of the laser. The amplitude d of the dipole moment is related to the field
amplitude by

d = α(ω)E (3)

where α is the complex polarizability. The physical sense behind the polarizability is straightforward from this
expression: it is the aptitude of an atom to align its dipole moment with the electric field.

In order to establish an expression for the polarisability α, we will consider the atom in Lorentz’s model of a
classical oscillator. Lorentz thought of the atom as a nucleus connected to the electron (of mass me and electric
charge e) by a spring. The spring would be set into motion by an electric field interacting with the charge of
the electron by either repelling or attracting the electron which results in either compressing or stretching the
spring. The oscillation eigenfrequency ω0 corresponds to the optical transition frequency. Damping results from
the dipole radiation of the oscillating electron. The equation of motion of the electron is

me~̈r +meΓω~̇r +meω
2
0~r = −e ~E (4)

where Γω is given by the power radiated by an accelerated charge [10]. This equation yields

~r = − e

me(ω2
0 − ω2 − iωΓω)

~E. (5)

Using equation (3) and the definition of the dipole moment of an electron ~d = −e~r, we find the following
expression for the polarisability:

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 − i(ω3/ω2

0)Γ
(6)

where Γ = (ω0

ω )2Γω is the on-resonnance damping rate, and corresponds to the spontaneous decay rate for
the resonant transition. The expression of the polarisability presented here is only valid for a 2 level atom,
which is rarely the case. Nevertheless, this expression gives a good approximation and makes us understand the
important quantities at stake for dipole trapping. The energy Udip of a dipole in an electric field is − < ~d. ~E >

and the power it radiates given by
dUdip

dt . For large detunings ∆ = ω − ω0 one can express the interaction
potential and the scattering rate:

Udip ∝ Re(α)I(r) ∝ Γ

∆
I(r)

ΓSc(r) ∝ Im(α)I(r) ∝
( Γ

∆

)2
I(r) (7)

Through these expressions, one can grasp the main properties of dipole trapping. One is there are two
different types of dipole traps depending on the sign of the detuning ∆. We can have a negative detuning
(∆ < 0) or a positive detuning. Negative detuning, or more commonly called ”red” detuning, is when the
driving frequency is below the atomic optical transition. In this case the dipole potential is negative and the
potential minima are found at positions where the intensity is maximum. The interaction therefore attracts
atoms into the light field. Positive detuning (∆ > 0), or ”blue” detuning, have a positive dipole potential and
potential minima are found at positions of minimum intensity: the dipole interactions repels atoms from the
light field.
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Figure 2: Illustrations of red-detuned traps and blue detuned traps. In the first case a Gaussian beam is
illustrated and in the second a Laguerre-Gaussian LG01 mode. Figure taken from [9].

The other feature is that the dipole potential scales with I
∆ whereas the scattering rate scales with I

∆2 . If
a photon scatters it induces heating. We want the scattering rate to be as low as possible for a given potential
depth therefore we use large detunings ∆.

In our experiment we used a red-detuned dipole trap because it was the most adapted to our experiment.
Also we are at very large detuning, indeed we want to trap atoms with light at λTrap = 532nm, and the optical
transition for the S3 to P4 transition is λ0 = 425nm. Our detuning is typically ∆ ∼ 1014, therefore we consider
the scattering rate as completely negligible.

2.2 Quantum mechanical approach

The Lorentz model presented here is a very insightful method since it is very simple and allows to grasps
the main concepts of dipole trapping. Its main limitation is that it can only describe with precision a 2 level
atom. This is not the case for our system since the different Zeeman levels are very close to one another, and
therefore we will trap atoms of different Zeeman levels. A multi atom level is necessary.

The interaction between an atom and the laser field can be treated in the dipole approximation since λTrap

is much larger than the size of an atom. The interaction can therefore be written under the following form

H ′ = −d.E (8)

where E is the electric field
With second order perturbation theory, one finds [14] the energy shift for the ground state of an atom

∆Eg = −1

2
Re
(∑

e

| < e|d.ε|g > |2

Ee − Eg − ~ω − i~Γ/2

)
︸ ︷︷ ︸

α(ω)

I(r)

ε0c
. (9)

The theoretical trap depth, corresponding to the maximum value of |∆Eg|, is of 58µK with our trapping
conditions under 1 Watt of power, with a waist of 40µm horizontally and 10µm vertically.

2.3 Focused beam trap

In this section I will present you how we create a trap by a focusing a beam on the atoms, and explain the
different characteristics of the dipole trap: shape, atomic density profile, trapping frequencies.

There are three main types of red-detuned dipole traps. Focused beam traps where one single beam is
focused, and since the dipole force points towards increasing intensity it forms a trap. Standing wave traps,
atoms are axially confined in the antinodes of a standing wave. And crossed beam traps, created by intersecting
focused beam. A schematic of these traps are shown figure 3.

Figure 3: Schematic of the different types of dipole traps. (a) Horizontal focused beam trap, (b) Vertical
standing wave trap, (c) Crossed beam trap. Image from [9].
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We used the focused beam trap to produce the cigar shape form because it is the simplest and most adapted
to our experiment.

The spatial intensity distribution of a Gaussian beam of power P propagating along the z-axis is

I(x, y, z) =
2P

πwx(z)wy(z)
exp(−2

( x2

wx(z)2
+

y2

wy(z)2

)
) (10)

where z is the axial coordinate and wx(z) (resp. wy(z) ) is the 1/e2 radius of the beam in the x-direction (resp.
y-direction) and has the following form

w(z) = w0

√
1 +

( z
zR

)2
. (11)

w0 is called the beam waist and corresponds to the minimum radius of the beam, zR is the Rayleigh length
and is given by zR = πw2

0/λ. The dimensions of our planned cigar shape beam are wx = 40µm and wy = 10µm
which gives us a Rayleigh length of 1.18cm along the x-axis and 740µm along the y-axis.

If the thermal energy kBT of the atomic system is much smaller than the traps depth |U(r = 0, z = 0)| = Û ,
the extension of the atomic system is much smaller in the radial direction than the waist, and much smaller in
the axial direction compared to Rayleigh length (figure 4). We can therefore approximate the dipole potential

Figure 4: Scheme of a Gaussian beam where the axial extension is compared to the Rayleigh length and the
radial extension to the beam’s waist.

by a harmonic oscillator and it yields:

U(r, z) ≈ −Û
[
1− 2

( x
wx

)2 − 2
( y
wy

)2 − 1

2

( z

zRx

)2 − 1

2

( z

zRy

)2]
(12)

From this form of the potential, we can deduce the axial trapping frequency ωz and the trapping frequencies
ωx and ωy at the beam’s waist.

ωx =

√
4Û/mw2

x

ωy =
√

4Û/mw2
y

ωz =

√
Û/mz2

R (13)

with 1
z2R

= 1
z2Rx

+ 1
z2Ry

With our trap shape, and the value of the energy calculated in section 2.2 by the multi-level theory, we have
the following theoretical trapping frequencies:

ωx = 750× 2π Hz

ωy = 3× 2π kHz

ωz = 25× 2π Hz (14)

The values of these trapping frequencies seem logical since we find a strong trapping frequency vertically, and
very loose horizontally. One worry is that since it is so loose, it could be sensitive to gravity or to a gradient of
magnetic field even though they are compensated by magnetic fields.
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2.4 Atomic Density Profile

Now that the shape of the trap is completely known, we must understand the atoms position distribution. In
the following section we will derive the form of the atomic density n(x, y, z) and find it has an inverse parabola
shape.

The atomic ground state of a bosonic quantum system is given by the Gross-Pitaevski equation [11]:

− ~2

2m
∆︸ ︷︷ ︸

kinetic term

ψ + (VTrap + g × n(x, y, z) + Φdd)︸ ︷︷ ︸
Potential term

ψ = µψ (15)

where n(x, y, z) is the density profile,Φdd is the dipolar contribution to the mean field interaction [12], and the
term g = 4π~2a/m corresponds to a pseudo potential representing the contact interaction with a the scattering
length. Pethick and Smith performs a full calculation of the density profile of a Chromium condensate with
dipole-dipole interactions and concludes that they only modify the size by a few percent [13].

In the x and z directions, the kinetic term is much smaller than the contact potential term therefore we
say we are in the Thomas-Fermi regime. This approximation consists in neglecting the kinetic term in front of
the contact potential term. In these directions, we therefore have an inverse parabola density distribution. In
the y direction, it is the kinetic energy term which dominates in front of contact potential term. Therefore the
equation reduces to the equation of harmonic oscillator, with the solution a Gaussian function. Because this is
an approximation, it is not completely Gaussian. We therefore have the following density profile

n(x,y, z) = n0

[
1− (

x

Rx
)2 − (

z

Rz
)2
]
e

−mω2
yy2

~ (16)

where n0 = µ

g
√

2
is the peak density with µ the chemical potential and

Rx =

√
2µ

mw2
x

Rz =

√
2µ

mw2
z

ay =

√
~

mwy
(17)

are the Thomas-Fermi radii in the x-direction (resp. z) and the oscillator length in the y-direction. As one can
see, the chemical potential is a key parameter in the physics of BEC since it sets the peak density and the size
of the condensate. It also dictates when condensation takes place. Indeed it is defined as the energy you need
to bring to the system to add a particle and for the system to keep it. If we had a non interacting BEC, it
doesn’t cost any energy to bring a particle in the fundamental state so µ = 0. For a system with interactions in
3D, the chemical potential is worth the interaction energy µ = gn. The chemical potential for a 2 dimensional
gas is defined by:

µ =
~ωy

2
+

g√
2
n2D. (18)

with n2D the two dimensional density. In our trap we have typically 15000 atoms which yields:

µ = h× 4.5kHz (19)

n0 = 1.81020at.m−3 (20)

Rx = 1.3µm

Ry = 430nm

Rz = 116µm (21)

The theoretical size of the condensate is as desired. Though, for our system to be described as 2D gas, we need
gn2D/

√
2 >> µ/~ which is not the case. We therefore have a gas that is not 2D, but nearly. It is very hard to

produce a purely 2D gas and to obtain a condensate with these typical dimensions would be very satisfying. An
easy way of producing a 2D gas is with lattices where typical oscillation frequencies is of the order of 50kHz.
Unfortunately it is not possible to isolate one lattice site from the others.
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2.5 Experimental Results

After choosing the specific optics to produce a beam with the desired waist, we aligned the beam on the
BEC. The atoms were not as confined as one as expected. We therefore measured the y-axis trapping frequency
(figure 5). The principle of the measurement is the following: the atoms are in the trap, the trap is suddenly

Figure 5: Measurement of the trapping frequency along the vertical axis. The trap is turned off and back on,
making the atoms oscillate. The atoms’ position was probed after different times. By fitting with a cosine
function, we find a trapping frequency of 500 Hz, which is one order of magnitude smaller than expected. The
difference is explained by the beam not having the correct sizes.

turned off and back on, we then measure the position of the oscillating atoms after different times. We measured
a trapping frequency of 500Hz which is 6 times too small.

We then imaged the beam and noticed that it wasn’t at all at the correct sizes, the focus point wasn’t the
same for both axis and it had an ugly shape. We corrected those points (the ugly shape was caused by one
of the cylindrical lenses’), characterized the beam along the optical path, and produced a beam of the desired
waist: 40µm horizontally and 11µm vertically (figure 6).

Figure 6: Image of the beam at the focal point after corrections. The astigmatism and size were corrected by
replacing the lenses. The parasite light disappeared when we changed the cylindrical lens with a cylindrical lens
with a better anti reflect treatment. The beam has an horizontal waist of 40µm and a vertical waist of 11µm

We then proceeded to aligning the beam back on the BEC and measured the trapping frequency using
parametric oscillations. This method consists in modulating the intensity of the trapping beam at a certain
frequency. This modulation only induces heating in the trap if the modulation frequency is twice the trapping
frequency [23]. Figure 7 shows the temperature as a function of the modulation frequency. The measured
trapping frequencies are:

ωx = 800× 2π Hz

ωy = 2.4× 2π kHz

ωz = 15× 2π Hz. (22)

These results need to be corrected by the transfer function of the Acoustic Optic Modulator. Indeed the
AOM has not the same efficiency in function of the input voltage. This transfer function has yet been measured
but we expect it to change little the result because a measurement of the collective excitation yields a trapping
frequency in the y-direction of 2.5 kHz and this experiment is independent of the AOMs transfer function. We
therefore produced a gas in very good agreement with expectations.
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Figure 7: Measurement of the trapping frequencies through the method of parametric oscillations. Heating in
the trap is induced when the modulation frequency of the trapping light is equal to twice the trapping frequency.
Each peak corresponds to twice the trapping frequency. The measured trapping frequencies are 800 Hz in the
x-direction, 2.4 kHz in the y-direction, and 15 Hz in the z-direction.

3 Imaging a BEC

During my internship, we also started setting up a new imaging system. The goal of this imaging system is
to image in situ the spin states of atoms in new dipole trap. The physical idea behind measuring spin states is
that the interaction of light in a given polarisation state is not the same given the spin state of the atom. In a
first part, I shall describe the optic system which gives us a resolution of 2.5µm, and give its main characteristics.
Then I shall introduce different BEC imaging system, briefly focusing on the prior imaging system which is an
absorption image after expansion of the condensate (i.e. after time of flight), before presenting the new system.

Mount Design
The optical table is very crowded, and where the condensation takes place there are so many optics it makes

the implementation of the imaging system extremely hard. Figure 8 is a picture of the table and shows the
little space left.

Figure 8: Picture of the optical table. Even though the BEC is at the far end of the table, the picture shows
how crowded the table is and the difficulty of access we will have when we will set up the imaging system.

11



We would like to image the atoms through the vertical axis since our atoms are tightly confined in the
horizontal plane. There is already the MOT beam on the vertical axis, therefore we have no choice but to image
the atoms with a beam slightly tilted (by 7˚) from the vertical axis. I designed a mount (figure 9) for the
imaging system which has a specific size and angle and should help us in aligning the beam on the BEC.

Figure 9: Scheme of an optical mount for the imaging system designed with specific size in order to make the
optical path to the BEC a little easier.

3.1 Optical System

3.1.1 Resolution of an optical system

The resolution of an optical system is defined as the minimum distance between distinguishable objects in
an image. The physical reason behind an optical system having a finite resolution is that a lens has a finite
size. To understand the effect we will use the simple example of a beam with a Gaussian intensity distribution.
A Gaussian distribution expands from infinity to infinity, even if it has a very small width. As the beam goes
through the lens, the lens cuts the tails of the Gaussian distribution, as a result the beam will be diffracted and
have a finite size. Through this we understand that the bigger the lens the better (i.e the lower) the resolution.
Rayleigh calculated the intensity distribution of a point source object diffracted by a circular aperture, and
defined the Rayleigh criterion as the resolution of a system:

∆l = 1.22λ
f

D
(23)

with λ the wavelength, f the focal distance of a lens and D its diameter. We would like a resolution of
about 2µm. We opted for using an achromatic doublet from Thorlabs of focal length f = 200mm of aperture
D = 50.8mm which should allow us to have a maximum resolution of ∆l = 2.04µm. The team had already
used this lens before, and in A. Pouderous thesis [16] he explains how the lens was carefully chosen to minimise
spherical aberrations.

3.1.2 The Optical System

The optical system cannot simply be a lens and a camera since the camera has big pixels of 14µm. We need
a minimum telescope of magnification 7 so that the resolution of the imaging is limited by the lens (i.e. limited
by diffraction), and not the pixel size of the camera. We will use a 7.5 magnification telescope. Therefore the
maximum resolution of the system is ∆l× 7.5 = 15.3µm and we should not be limited by the pixel size but by
the diffraction limit. Since the Thorlabs lens of f = 200mm will be the first lens, and we need a magnification 7
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telescope we have two options: or use a lens with a minimum focal length of 1400mm, or use an other f=200mm
Thorlabs lens therefore building a 1 magnification telescope and then a 7 magnification telescope. We opted
for the second solution since it was the most convenient for our experiment. The optical system to image is the
following:

Figure 10: Optical system used to image a BEC. Lenses L3 and L4 form a 7.5 magnification telescope. L1 sets
the diffraction limit of our system.[19]

The distance between each lens (the focal distance for the distance object-L1 and L4-Camera, the sum of
the focal distance for the others) is justified by Gaussian optics in order to perform a relay system.

Camera
The camera used for the imaging system will be an Andor camera. This is a luxurious camera with high

sensitivity for light at 400nm, with a quantum efficiency of about 0.9. It can be cooled down to -100˚C, which
is critical for elimination of dark current detection limit. It is a single photon sensitive camera which has an
electron multiplier feature with less than a photon noise. I did not use this camera for the characterisation of
the optical system but a Lumenera camera. The lumenera camera has not got as exceptional characteristics as
the Andor, but it produces images with excellent sensitivity and low dark current.

Determination of the resolution
To measure the resolution of our system, we used a test target of Thorlabs. This target is a set rectangular

bars of different known sizes (figure 11) and the resolution of the optical system is determined by the first set
of undistinguishable bars.

Figure 11: Image of the test Target. Each set of rectangular bars have different sizes, and the resolution of the
optical system can be determined by the first set of bars that we cannot distinguish

The smallest set of bars is of 4.38µm, i.e. bigger than the resolution of our system. Therefore to evaluate
quantitatively the resolution we used a more complete technique. The electric field distribution of a point source
object diffracted by a circular aperture is the Airy function. Therefore for 3 source point it is the sum of 3 Airy
functions and the intensity distribution should be given by (for a beam propagating along the z-axis):

I(r, z) = A
∣∣∣J1(kD(r−a)

2z )
kD(r−a)

2z

+
J1(kDr2z )
kDr
2z

+
J1(kD(r+a)

2z )
kD(r+a)

2z

∣∣∣2 (24)

where k is the wave vector, A the amplitude, z is the distance between the object and the lens, D the lens aper-
ture, and a is the distance between the center of 2 rectangles. This form of the distribution is an approximation
since the rectangles we are imaging are not point source objects. The correct distribution would be given by
the squared modulus of the Fourier Transform of the convolution of the objects electric field distribution [18].
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This is a heavy calculation (even for Mathematica!). We found that for a system which is diffraction limited
the intensity distribution (24) is a very good approximation.

Fitting our data with (24) we have access to the effective diameter of the lens, and through (23) we have
the resolution of our system, which we optimized to 2.5µm. Figure 12 shows a picture of the USAF target with
our imaging system, with a fit of the intensity profile giving us the effective diameter of the lens.

Figure 12: Picture of the USAF target. We can see a clear astigmatism between the two axis and there is no
reason why one axis should be resolved better. By moving the camera by a few micrometres, we can give the
other axis a better resolution. Fit of the intensity profile with (24) to determine the effective diameter of the
lens. From that we can determine the resolution of the system.

It is very important for us to know if a lens’s position is very sensitive to the resolution. Indeed if we find
that a lens needs to be exactly at a certain position for the resolution to be optimized, we will have to be careful
in placing it. In the next paragraph, we will study the importance of the position of each lens.

Resolution dependence on the lens position
One should place each optical element at the focal distance or the sum of the focal distance. But experimental

factors make that it can differ slightly.
Since the two first lenses form a virtual object at the focal distance of the third lens, these 2 lenses play a

”translational” role in the sense that the first lens (L1) is equivalent to the third (L3), and the second (L2) to
the fourth (L4).

We can understand that the first lens is going to be the most important. Indeed, as light passes through
the object, the smallest dimensions, corresponding to the largest frequencies get more diffracted, and therefore
if the lens is too far it will not ”catch” these frequencies. Here the lens plays the role of a frequency filter. One
could think that we must place the lens just behind the object. If we do that, the small frequencies will be
caught by the first lens, but not by the second since the beam wouldn’t be collimated. Figure 13 shows the
resolution of the system by changing just the distance between the lens and the object.

Figure 13: Horizontal and vertical resolution of the optical system as a function of the distance between the
first lens and the object. The data suggests we need to be precise at the mm to minimise the resolution
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The data, confirmed by predictions made with Zemax, suggests that the position of the lens must be placed
at the millimetre scale in order to minimize the resolution and that it must placed at 215 mm from the object.
We will therefore place the lens on a translational mount. These mounts allow us to place an object with a
precision of 10µm. It is quite surprising to find that the best resolution is found so far away from the focal
distance. We believe the reason is the lens is slightly further it catches a little less the big frequencies but
suffers less from aberrations. Therefore the theoretical resolution of the lens placed 21.5cm is slightly worsened
(∆l = 2.2µm) but the experimental resolution is better.

At the exit of the first lens, the image is collimated and therefore we shouldn’t lose much information. In fact
it should only affect the transverse resolution, leaving the resolution on the optical system untouched. Changing
the position of L4 over centimetres and measuring the system’s resolution we concluded that it’s position is not
critical for the resolution on axis. (figure 14). Its position should however affect the transverse resolution so it
will still be placed carefully, so that the distance between L1 and L2 is f1 + f2.

Figure 14: Horizontal and vertical resolution of the optical system as a function of the distance between the
third and fourth lens. The data suggests that we do not need to be very precise on the position of the fourth
lens.

The third lens is the same lens as the first one exept that its even more sensitive. Indeed there is a factor 4
between their focal lengths so a mm precision becomes a 250µm precision, and therefore it is necessary to put
a translational mount so that the image of the object through the 2 first lens is exactly at the right position.

The second lens plays the same role as the fourth and therefore doesn’t affected the resolution on axis and
we will not need a translational mount in order to place it.

Now that the resolution of our optical system along the optical axis is known, we must study the in-plane
resolution (the transverse field resolution) i.e. study the resolution as we move away from the optical axis. It is
important that it does not deteriorate too fast since we would like to ascertain spin population over the whole
trap. By moving the object in it the object plane and evaluating our resolution, we find, in agreement with
predictions made by Zemax, that the resolution does not deteriorate over a large distance (figure 15). We can
conclude from the data that our experimental transverse field resolution is of at least 400µm since the resolution
of the object 400µm off axis is as good as on the optical axis. This is an important result because we know that
the resolution of our system will be the same over the entire condensate.

The depth of field of our system must be known. Experimentally we find that the resolution of our optical
system not very sensitive on the position of the camera: the resolution did not change over a displacement of
1.5mm.

The atoms are in a metallic chamber with thick view ports. We placed an equivalent piece of glass in
our setup, with a tilted angle, to simulate the experimental condition and the resolution is not destroyed (it
changes by less than 10%). This is an important result because one could think that the angle could introduce
aberrations to the system. Fortunately it did not and we obtain a resolution of about 2.9µm. Finally, we placed
a piece of glass to simulate the effect of the phase spot glass (see section 3.3.2) on the resolution, which did not
change the resolution.

The optical system has been completely characterized. We have a resolution of 2.9µm close to the limit of
diffraction (2.2µm). The resolution doesn’t get attenuated over the typical size of our trap. The depth of field
is large, of at least 1.5mm. The effect on the resolution of each lens has been evaluated, the second and fourth
lens’s position are not critical but the first and third ones are that’s why we will use a translational mount to
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Figure 15: Horizontal and vertical resolution of the optical system as a function of the distance to the optical
axis. From the data we can conclude that our transverse field resolution is of 800µm

place them. Finally, to put ourselves as close as possible to experimental conditions we placed a piece of glass.
The glass was used to simulate the glass cell and the phase spot. We concluded that they will not destroy the
imaging resolution of our setup.

3.2 BEC imaging systems

There are two main types of imaging system, in-situ and time of flight imaging. In both cases we image the
column density distribution of atoms, but either with the atoms in the trap or after a ballistic expansion. These
techniques can be used either by shining resonant light which the atoms will absorb and hence destroys the
condensate. Or by shining non resonant light, which the atoms don’t absorb but de-phase. The new imaging
system relies on the latter principle. Whereas the prior imaging technique, a Stern and Gerlach analysis, is
absorption imaging after time of flight. This analysis allows us to ascertain the populations of the different
Zeeman sublevels and works the following way. A magnetic gradient is pulsed upon the condensate while it is
in expansion. This pulse results in a spatial separation of each spin state since the strength of the interaction
between magnetic field and an atom depends on the spin state of the atom (E = msgµBB, where ms is the spin
state µB Bohr’s magneton and g the Lande factor, and F = −∇E). This type of imaging is called Stern and
Gerlach analysis in reference to Stern and Gerlach experiment in which atomic spin was demonstrated [20].
Figure 16 is a typical image of the prior imaging technique. The spatial separation induced by the magnetic
pulse allows us to clearly identify the population of each spin state.

Figure 16: Image from the prior imaging technique: Stern and Gerlach analysis of a Chromium BEC. The
different spin states are separated by a magnetic pulse and then imaged after a time of flight. Since Chromium
has S = 3, there are 7 Zeeman sub-levels. The intensity of the spot is related to the population, therefore the
spin state mS = −3 has a larger population than the other spin states. Image taken from [17]

3.3 Non destructive in situ imaging system

The prior imaging technique was very instructive since it allows precise measurement of the population of
each spin state. But it has two main limitations which motivates us to install the new system. First, it is a
measurement after expansion of the condensate, therefore we cannot see the spin dynamics inside the trap. In
particular, the visualization of spin domains is not possible. And secondly, absorption imaging only allows us to
measure the population of each state, but not the coherences between each spin state. Through phase imaging
one can probe coherences and this could be an interesting development to the imaging system I present here.
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3.3.1 Phase Contrast Imaging

The method of phase contrast imaging was invented by Zernike in the 1930s [21]. The method consists in
interfering a light that underwent a phase shifted with unshifted light (like all phase measurement techniques).
Where our method differs from an ordinary interference measurement is by phase shifting the non diffracted
light by inserting a small object (i.e something with a refractive index different from 1) called a phase spot.
Figure 17 shows a scheme to illustrate the method.

Figure 17: Scheme of Phase Contrast Imaging method. The unscattered part of the beam (part of the beam
that doesn’t go through the BEC) focuses on the phase spot (See section 3.3.2) and gets phase shifted. The
scattered part is barely affected by it, but is phase shifted by the BEC.

The phase spot will introduce a phase θ. The electric field in the image plane can be written as:

E = EUnscate
iθ + EScat (25)

The complex phase accumulated by the scattered light in a medium is φatoms = φ′ + iφ” where φ′ is the
phase shift and φ” is the optical density. To isolate locally phase shifted photons, formally this is equivalent
to making the difference between a beam which locally phase shifted and a beam which is not phase shifted.
Hence the electric field is

E = EUnscate
iθ + EUnscat(e

iφatoms − 1) (26)

and the intensity distribution is given by

I = I0(2 + e−2φ” − 2 cos(θ) + 2 cos(θ − φ′)− 2 cos(φ′)e−φ”). (27)

From this expression, the importance of the phase spot is clear. If there were no phase spot, θ = 0, the intensity
no longer depends on φ′ because the terms cancels themselves out. On the other hand, with a phase spot chosen
such that θ = π

2 , and φatoms << 1, there is a linear dependence on the phase shift created by the atoms:

I = I0(1 + 2φ′) (28)

We have just established the relation between the intensity signal we will measure, to the phase caused by
the atoms. Since we would like to perform non destructive imaging, we hope to keep φ” close to 0 in order to
have the least absorption possible. In the following I will start by presenting the characteristics of the phase
spot we produced, then I shall show how to relate this phase shift to the atomic density profile calculated in
2.4, and finally to the atomic spin state.

3.3.2 Characterisation of the phase spot

In order to build the phase spot, I worked in collaboration with Thierry Billeton of the optic workshop.
We deposited by evaporation 300nm of MgF2 of 200µm wide on the glass. We wanted 280nm since, knowing
the refractive index of MgF2, it would create the π

2 phase shift desired. The 200µm width was decided from
a competition between being big enough to be able to align the unscattered light on the spot (the unscattered
beam should have a size of about 10µm), but not too big that it would dephase too much the scattered beam.
We measured the spot sizes in a clean room with a profilmetre and found 300nm height and 250µm wide. The
sample measured was only a test, and the final evaporation was produced in the same conditions. We will
only characterise it optically in order to not damage it ( more exposure to dust, mechanical pressure during
measurement, ...) and to determine the phase shift it creates.
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Figure 18: Characterisation of the phase spot size (height and width) with a profilmetre. We measured 300nm
height and 250µm of width. Such a spot should able us to dephase the unscattered beam by π

2 .

3.3.3 Refractive index of a cold atom gas

It is clear that the phase shift created by the atoms is linked to its refractive index N . There are two main
physical quantities on which the refractive index depends on the atomic density n of course but also and mainly
on the atomic polarisability α. Indeed the phase shift is caused by the modification of the polarisation of the
probe field by the atomic dipoles. Since we hope to observe spin domains, it is the difference of polarisability
of each spin state which is going to make this possible. The expression of the refractive index is

N 2 = 1 + nα

⇒ N ≈ 1 +
1

2
nα (29)

Light passing through a medium with an index of refraction N over a distance L accumulates a phase φatoms:

φatoms = kimage(N − 1)L (30)

where kimage is the imaging light wavenumber. Since the atomic density depends on the position, the phase
shift also depends on the position and we have for an imaging light in the y direction:

φatoms(x, z) = kimage
α

2

∫ Ry

−Ry

n(x, y, z)dy︸ ︷︷ ︸
Column density = nc

. (31)

As discussed in section 3, we will not image the atoms along the y-direction since the MOT beam is already
occupying it. We are imaging with a tilted angle of 7˚ and therefore we must integrate along that axis, which
implies a simple variable change for the integral in 31. Since the intensity of light after passing through a
medium is I = I0eiφatoms(x,z), the real part of φatoms (proportional to Re(α)) is proportional to the phase shift.
And the imaginary part of Φ (proportional to Im(α)) to the absorption.

For simplicity, we will use the expression of α obtained for a 2-level atoms (equation (6)). This expression
is however incomplete since it considers only the electronic orbital wavefunctions (related to the spontaneous
decay rate Γ), and didn’t take into account the coupling between the laser polarisation and the electronic and
nuclear angular momenta involved. More precisely in section 2, we assumed only the coupling between electronic
orbital function of different states:

| < i|d|j > |2 =
3πε0~c3

ω3
0

Γ. (32)

Taking into account the electronic and nuclear angular momenta and the laser polarisation this expression
becomes:

| < i|d|j > |2 =
3πε0~c3

ω3
0

Γ× c2ij (33)
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where cij is the Clebsch-Gordan coefficient of the considered transition. The different Clebsch-Gordan coeffi-
cients can be found in Appendix.

3.3.4 Experimental Issue

In the experiment, imaging the atoms will consist in taking three images. The first image, taken with atoms
in the trap and the imaging light, yields Iatoms(x, z). The second image contains the intensity of the imaging
light I0. This image is necessary since it allows us to know the intensity profile of the unscattered part of the
imaging beam. The third image is the intensity profile of the background, with no light nor atoms. We take this
picture to subtract the contribution of the background of each image and to only have the atomic contribution.
The normalized intensity profile of the atom is given by:

I(x, z) =
Iatoms − Ibackground

I0 − Ibackground
(34)

Using equation (28), we can relate our image information to the atomic phase.

3.3.5 Theoretical Results

In this section I will show plots using the theory developed in 3.3.1 and in 3.3.3. In the following figure
(figure 19), I plot the expected measurements. There is only little dephasing since the imaging beam only see
few atoms (we image along the most confining axis), therefore to have a measurable dephasing we have to choose
a light frequency very close to resonance. But as we get closer to resonance the atoms will absorb light more
and more and the measurement will be destructive. These graphs are performed for a detunning ∆ = 5Γ and
are 1D plots over the condensate along the trapping beam axis. The top left graph shows typical dephasing
and the top right the absorbance. We have a dephasing of 0.2 rad and an absorbance 0.005 which shouldn’t
be too destructive. In the bottom plot, I supposed that the atoms situated from −Rz to 0 were in the spin
state mS = −3 and the ones from 0 to Rz were in the spin state mS = −2 and plotted the phase profile and
normalized intensity profile. We see that the difference of dephasing is of 0.1. To know if we can measure this
signal, we need the noise of the camera β to be smaller than the difference we should measure:β < 0.1× I. The
noise of the camera is inferior to 1 in the electron multiplier mode. Therefore we should be able to measure the
spin state of the atoms. The extreme sensitivity of our camera will allow us to shine minimum power on the
atoms to have minimum absorption, i.e. minimum heating, but our imaging system will not be completely non
destructive. To be non destructive, the number of atoms must be greater than the number of atoms absorbing
a photon:

NAbs << NAt

→ ∆I × S
~ω

t << NAt

⇒ t <<
nc × ~ω
0.005I0

(35)

with nc the column density, and I0 the intensity of the imaging light. For a light intensity comparable to the
saturation intensity (about 10mW.cm−2), this condition implies image pulses shorter than a few microseconds.

Due to the fact that the atomic density along the imaging axis is not very large, we need to image with
light very close to resonance to create a significant dephasing. We should be able to implement a phase contrast
imaging system to the experiment, unfortunately it will be a little destructive.
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Figure 19: Theoretical Graphs of expected measurements. All the 1D plots are cuts at x=0 (on the trapping
axis). The top left graph shows the dephasing and the top right the absorbency of the condensate. The bottom
graph shows the dephasing for a condensate with one side atoms in the spin state mS = −3 and on the other
side mS = −2.

Conclusion

I presented the theory of dipole trapping and deduced the theoretical values of key parameters for our 2D
dipole trap. We realize that our gas will not be purely 2D since the chemical potential is of the order of the
trapping frequency along the strong confining axis ∼ 3kHz. We characterised the beam along the optical path
and ascertain the fact that we produce a beam of 40µm horizontally and 10µm vertically. The dipole trap has
been aligned and its characterisation will be performed in the coming days. At the same time, I prepared an
imaging system, simulating our experimental conditions (i.e. with a piece of glass with a tilted angle to simulate
the atoms chamber), of a resolution of 2.5µm. The imaging system was studied in depth, we concluded that the
camera and the first and third lenses position is sensitive at the millimetre scale and will therefore be placed
on a translational mount. The transverse field is experimentally of at least 400µm which is much larger than
the size of our condensate. The depth of field was evaluated at the order of the Rayleigh length (∼ 30µm). I
designed mechanics for the imaging systems implementation. A phase spot was produced in order to perform
the contrast phase imaging and characterized by profilmetre measurements, the spot has a diameter of 250µm
and a height of 300 nm and should dephase the scattered beam by π/2. Finally a theoretical treatment of phase
imaging technique was studied, and typical expected curves were given. From these graphs we can conclude
that thanks to the extreme sensitivity of our new camera we will be able to perform phase contrast imaging of
the atoms spin state. Unfortunately, by imaging, we will be a little absorptive and so the system will not be
completely non destructive.
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Appendix: Clebsch-Gordan Coefficients

I present here the Clebsch-Gordan coefficients for the allowed transitions between 52Cr ground state and its
7P4 are shown figure 20. These are important since it is thanks to the difference between the coefficients that
we will probe the different spin states.

Figure 20: The squares of the Clebsch-Gordan coefficients for the allowed transitions between 7S3 and 7P4.
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