Quantum magnetism with cold atoms

1) dissipative cooling of spin chains (theory) 2) birth of the strontium experiment at LPL

M. Robert-de-Saint-Vincent

I. Manai, P. Bataille, J. Huckans, P. Pedri, E. Maréchal, O. Gorceix, B. Laburthe-Tolra

Laboratoire de Physique des Lasers Centre national de la Recherche Scientifique, Université Paris 13

Laboratoire Charles Fabry – 25 February 2019

Magnetism with cold atoms

Various magnetic models implemented in cold atoms

Variety of magnetic interactions using ground state atoms, Rydberg state atoms, molecules, mappings... (spin-dependence, short- or long-range, anisotropy)

 \rightarrow Heisenberg, Ising, XXZ, and others...

Much studied : antiferromagnetic Heisenberg model from super-exchange in the Mott regime

$$
H = -J\sum_{i,j>}\vec{S}_i\vec{S}_j
$$
with $J \approx -4t^2/U$

Hulet, Greiner, Bloch, Zwierlein, Kohl, Esslinger, ...

Broad panel of physical questions : frustation (tunable geometries), large spin systems, interplay with transport (t-J model), …

Cold atoms are isolated spin systems

The low entropy challenge (Mc Kay and DeMarco, 2011)

High quality Mott state generation Very few groups manage spin ordering

Ground state lattice magnetism usually in isolated systems

Ground state lattice gas Cold bath continuum

so far tackled by **inhomogeneous systems**

Ho 2009, Bernier 2009, Mathy 2012, Hart 2015, Mazurenko 2017, Kantian 2018 ...

A problem tied with spin entropy transport

Cold atoms are isolated spin systems

Approach 1 (theoretical work): Engineer a bath

Many spin dissipation proposals discuss light as bath: Diehl 2010, Kaczmarczyk 2016, … Zoller, Weimer, ...

Here thermalize the spins with the phonons of an atomic bath (atomic mixtures)

Approach 2 (on a new strontium experiment)

Dynamics from deterministically prepared "spin patterns"

Heisenberg magnetism from super-exchange in lattices, with 10 spin states.

Introduction to the experiment in the second part : general goals narrow-line cooling 1) Dissipative cooling of spin chains by a bath of dipolar particles (theoretical proposal)

2) Birth of the Strontium experiment

thermalize the spins with the phonons of an atomic bath (atomic mixtures)

The tool: dipolar interactions

The bath must be able to flip spins

Magnetic dipolar interactions – anisotropic – non spin conserving

Dipolar quantum gases: Pfau, Laburthe-Tolra, Lev, Ferlaino, Grimm, Modugno...

Spin-orbit coupling; includes non-spin conserving terms

The spin degree of freedom can directly thermalize with the motion degree of freedom

Dipolar interactions between a spinfull Mott insulator and a dipolar BEC offer true thermalization of the spin degree of freedom of the Mott insulator

- *spin degree of freedom* **fully free:** magnetization, collective spin length
- dissipative preparation / protection of highly correlated states

Timescales : compatible with alkali spin chains

I) Overview of the physics

System overview A Fermi Golden rule treatment Anisotropic coupling to the bath

II) Realistic system – numerical calculation

Lattice potential effect on the bath Convergence to a thermal state Collective spin dynamics

System overview and simplifying assumptions

Bath: Bogoliubov description in the latttice; finite temperature.

Spin chains : finite size 1D chain (up to 7), exactly diagonalized, neglecting any hole/doublon

A Fermi Golden rule treatment

Dissipative evolution evaluated from the Fermi golden rule between collective spin chain eigenstates

$$
\Gamma_{i\to f} = \frac{2\pi}{\hbar} \sum_{|f_{\text{bath}}|} |\langle f_{\text{spin}}; f_{\text{bath}} | H_{\text{int}} | i_{\text{spin}}; i_{\text{bath}} \rangle|^2 \delta(E_{if} + E_{if}^{\text{bath}})
$$
\n
$$
\frac{dp_i}{dt} = \sum_{f} (-\Gamma_{i\to f} p_i + \Gamma_{f\to i} p_f)
$$

Example : 2-atom spin chain, four collective states

Our work: compute explicitly all these matrix elements, in realistic settings

Detailed calculation in NJP 20, 073037 (2018)

Species: alkali + dipolar. Here, **⁴⁰K as spin chain, ¹⁶⁴Dy as highly dipolar species (10 µ^B)***

** Ravensburger et. al., Phys. Rev. Lett. 120, 223001 (2018)*

Radiation diagrams from two spins (double well)

(here without lattice potential for the bath)

Severe anisotropy and collective spin dependence

Example : rate from S_{tot} = 1, m = 0 to S_{tot} = 0, m = 0
\n
$$
|f_{bath}(\vec{q})\rangle = b^{\dagger}(\vec{q})|BEC\rangle
$$
 with $\epsilon(\vec{q})=J$

Radiation diagram calculation, as e.g. done for spontaneous emission of light, **with cooperative effects at play**

Radiation diagrams from two spins (double well) $\qquad \qquad \bullet$ B

(here without lattice potential for the bath)

Severe anisotropy and collective spin dependence

Example : rate from Stot = 1, m = 0 to Stot = 0, m = 0

$$
|f_{\text{bath}}(\vec{q})\rangle = b^{\dagger}(\vec{q})|BEC\rangle
$$
 with $\epsilon(\vec{q})=J$

Radiation diagram calculation, as e.g. done for spontaneous emission of light, **with cooperative effects at play**

 $\vec{q}\cdot\vec{a}=0$: global energy shift, no effect

Radiation diagrams from two spins (double well) $\qquad \qquad \bullet$ B

(here without lattice potential for the bath)

Severe anisotropy and collective spin dependence

Example : rate from Stot = 1, m = 0 to Stot = 0, m = 0

$$
|f_{\text{bath}}(\vec{q})\rangle = b^{\dagger}(\vec{q})| \text{BEC}\rangle
$$
 with $\epsilon(\vec{q})=J$

Radiation diagram calculation, as e.g. done for spontaneous emission of light, **with cooperative effects at play**

 $\vec{q}\cdot\vec{a}=0$: global energy shift, no effect

I) Overview of the physics

System overview A Fermi Golden rule treatment Anisotropic coupling to the bath

II) Realistic system – numerical calculation

Lattice potential effect on the bath Convergence to a thermal state Collective spin dynamics

Lattice potential: strong effect on the bath

⁴⁰K - ¹⁶⁴Dy

Given a lattice depth for the spin chain,

In the vicinity of 624 nm (Dy) **the lattice depth for the bath can be independently tuned**

 13 Same opportunity for Erbium in the vicinity of 580 nm

Convergence to a thermal state of the collective spin

1 appendix ; and Gerbier 2006

Chain Length : 7

Convergence to a thermal state of the collective spin

Occupation of the 2⁷ = 128 spin chain eigenstates

Collective spin dynamics

(Initially balanced spin mixture)

Equilibration rate tends to a value roughly independent on chain length and on preparation condition

Timescale of order ~ 1 s – experimentally relevant, though not fast

Limited by restraining ourselves to very low quantum depletion (5%) Faster dynamics plausible in deeper bath lattices, but this leaves the validity range of the Bogoliubov description

> Dysprosium vs Erbium : about similar (7 $\mu_{_{\rm B}}$, but also 583 nm lattice) Alkali: ⁴⁰K has low Lande factor, but scientific interest of fermions for the t-J model

Conclusion and outlook

Dissipative preparation of strongly correlated spin states

Use of an atomic bath

Spin chain thermalization with **free magnetization** and **free spin length**

The scheme relies on spin-orbit coupling in dipolar interactions

→ **perspective**: cooling with a non-dipolar atomic bath using artificial SOC?

Spielman, Zwierlein, Zhang, Pan ...

Fermionic baths could be favourable

Large density of states at low energy (excitations at the Fermi momentum)

A formalism describing dipole-coupled Mott spin chain and superfluid BEC in lattice

 \rightarrow useful beyond Heisenberg chains (e.g., mixtures of dipolar isotopes in lattices)

Ferlaino, Lev, Pfau, Laburthe-Tolra, ...

 16 \rightarrow other spinor species of interest (bosonic alkalis with higher Lande factor than ^{40}K)

1) Dissipative cooling of spin chains by a bath of dipolar particles (theoretical proposal)

2) Birth of the Strontium experiment

THE STRONTIUM PROJECT

Which strontium?

Bosons:

84: least abundant (0,6%) Best collision properties \rightarrow first degenerate 86 88: most abundant (83%), but unfavourable collisions

All of them:

No spin in the ground state : L=0, S=0

Fermions:

87: abundance 7% Favourable collisions

Nuclear spin I = 9/2

Contact interactions independent of the spin state:

- **10 spin states** Fig. 2.1 The Size of the Spin exchange : N(m_e) = constant
	- only the Pauli principle matters for the magnetic interaction

THE STRONTIUM PROJECT

Exploring magnetism with tunable spin degree of freedom

2 spin states: analogy to spin 1/2 electrons 3 spin states: analogy to quarks with three colours Up to 10 spin states: no equivalent

Large spin + spin-independent interactions \rightarrow underconstrained magnetism (frustration)

Hermele 2009, PRL **103**, 135301

Narrow atomic transitions: metrology tools (atomic clocks)

Cooling New probes New preparation protocols specifically suited for isolated systems

2 valence electrons

 \rightarrow singlet and triplet electronic spin states

Collaboration with **Marc, Florence, Anaïs, Clémence, Romaric** Spectroscopy – a 1 kHz/Sqrt(Hz) reference

- narrow-line laser cooling (~µK)

- hyperfine structure: Effective magnetic fields

> **strong spatial variations : site-selective spin control**

Temperature

$$
\text{Doppler limit}: \quad k_B T \sim \frac{\hbar \Gamma}{2} \sim k_B \times 350 \, nK
$$

Recoil limit: $k_B T \sim$ h^2 2*m* λ $\frac{1}{2}$ ∼ k_B ×460 *nK*

Density / Phase space density

Reduced radiation trapping

$$
n_0 = \frac{\kappa}{\Gamma s_0 \sigma \hbar k_L} = \frac{4}{3\pi} \frac{|\delta|}{\Gamma} \frac{\gamma_J b'}{\Gamma} k_L^2.
$$

Katori et al (1999) : free space MOT, 10^{12} / cm³ 10^{-2} phase space density

In principle ideal for loading a 3D optical trap Ido et al (2000), Stellmer et al (2013) :

Laser cooling in dipole traps to PSD's of up to 1

- hyperfine structure: Effective magnetic fields

> **strong spatial variations : site-selective spin control**

 H yperfine structure Δ_{hfs} ~ GHz >> Γ = 7 kHz

... 3P1, F = 11/2

...

- hyperfine structure: Effective magnetic fields

> **strong spatial variations : site-selective spin control**

Hyperfine structure Δ_{hfs} ~ GHz >> Γ = 7 kHz

- hyperfine structure: Effective magnetic fields

> **strong spatial variations : site-selective spin control**

 H yperfine structure Δ_{hfs} ~ GHz >> Γ = 7 kHz

- **narrow-line laser cooling (~µK)**
- **hyperfine structure: Effective magnetic fields**

strong spatial variations : site-selective spin control

 $3P1, F = 7/2$

Effective B-field with μ m-scale variations

Prepare Evolve

(?)

spontaneous emission

light shifts

Within the structure:

 H yperfine structure Δ_{hfs} ~ GHz >> Γ = 7 kHz

 $\sim \Gamma/\delta \simeq 10^{-4}$ << 1

Illustrations of specificities in narrow-line MOTs

Illustrations of specificities in narrow-line MOTs

Laser cooling on a resonant shell

 \rightarrow capture stage requires artificial line broadening

Tool: strong MOT compression by a frequency ramp

July 2018: 88 Sr in a dipole trap

Mukayami et al, PRL 90, 113002 (2003): complications from the hyperfine structure

Restoring force from the polarisation-dependent detuning Condition for $a \rightharpoonup F+1$ transition : $F/(F+1) < \mu_e/\mu_g < F/(F-1)$

Mukayami et al, PRL 90, 113002 (2003): complications from the hyperfine structure

Relying on polarisation-dependent detunings, a restoring force for *m* could be ejecting for another

Mukayami et al, PRL 90, 113002 (2003): complications from the hyperfine structure

- restoring force from Clebsh Gordan
- Only one side of the trap...

Mukayami et al, PRL 90, 113002 (2003): complications from the hyperfine structure

- Restoring force from Clebsh Gordan coefficients
- Spin admixing from a second transition with smaller μ
- *recent alternative: sawtooth adiabatic passage*
- *[Norcia et al, Thomson group, NJP 20, 023021 (2018)]*

1130 MHz
\n
$$
\downarrow F_e = 7/2
$$
\n1130 MHz
\n
$$
F_e = 9/2
$$
\n1463 MHz
\n
$$
F_e = 11/2
$$
\n...
$$
F_e = 11/2
$$
\n...
$$
G = 3/11
$$
\n
$$
G = 3/11
$$

Ultracold 87 Sr

Loading stage sensitive to frequency drifts by O(10 kHz): stable referencing essential (collaborations with Marc's team)

Ultracold 87 Sr

Loading stage sensitive to frequency drifts by O(10 kHz): stable referencing essential (collaborations with Marc's team)

20th of January 2019 : T/Tf ~ 1 with 10 spin states

This year's ambitions: Optical pumping procedures; spin measurements; Optical lattices

Thank you for your attention

Dissipative cooling of spin chains by a bath of dipolar particles

New Journal of Physics 20, 073037 (2018)

M. Robert-de-Saint-Vincent, B. Laburthe-Tolra, P. Pedri

Spin-orbit coupling in collisions enables the use of an atomic bath to thermalize a spin chain, with **free magnetization and free spin length**

Birth of the strontium 87 experiment

Quantum magnetism with narrow-line manipulation tools

I. Manai, P. Bataille, J. Huckans, E. Maréchal, O. Gorceix, M. Robert-de-Saint-Vincent, B. Laburthe-Tolra

And many, many fruitful internship contributions presently in cold atoms: W. Dubosclard, C. Duval

Now at T/Tf \sim 1

Laboratoire de Physique des Lasers Centre National de la Recherche Scientifique, Université Paris 13

 25 ANR, FIRST-TF, DIM Nano'K, DIM Sirteq, IFRAF, IFCPAR

Microwave dressing

F. Gerbier et. al., Phys. Rev. A. **73**, 041602 (2006)

Lattice potential: strong effect on the bath

Enhanced interactions : very sensitive to anisotropies

Dispersion relation : wavevectors and density of states

Coupling strength for a given mode q

Mode decomposition onto plane waves vs Vdd anisotropy

Radiation diagram in lattice

The tool: dipolar interactions

The bath must be able to flip spins

Dipolar relaxation enables true thermalization with free spin degree of freedom

Pasquiou et al, PRL **106**, 255303 (2011)

The gaz always reaches the energetically-favourable spin distribution

Ĵ 7

Robustness of the AF state to a bias Δ

Collective spin dynamics

Initially balanced spin mixture

Von Neumann spin entropy

$$
S = -\sum_i p_i \log(p_i)
$$

Collective spin dynamics

Equilibration rate tends to a value roughly independent on chain length and on preparation condition

Timescale of order ~ 1 s – experimentally relevant, though not fast

Limited by restraining ourselves to very low quantum depletion (5%) Faster dynamics plausible in deeper bath lattices, but this leaves the validity range of the Bogoliubov description

> Dysprosium vs Erbium : about similar (7 $\mu_{_{\rm B}}$, but also 583 nm lattice) Alkali: ⁴⁰K has low Lande factor, but scientific interest of fermions for the t-J model

Radiation diagrams from two spins (double well) $\qquad \qquad \bullet$ B

(here without lattice potential for the bath)

Severe anisotropy and collective spin dependence

q

References

- M. Cazalilla, A. Ho, and T. Giamarchi, New J. Phys. **8**, 158 (2006)
- S. Diehl et. al., Phys. Rev. Lett. **105**, 227001 (2010)
- F. Gerbier et. al., Phys. Rev. A. **73**, 041602 (2006)
- Hart et. al., Nature **519**, 211 (2015)
- J. Kaczmarczyk, H. Weimer, and M. Lemeshko, New J. Phys. **18**, 093042 (2016)
- Mazurenko et al., Nature **545**, 462 (2017)
- Mathy et. al., Phys. Rev. A **86**, 023606 (2012).
- B. Pasquiou et. al., Phys. Rev. A **81**, 042716 (2010)
- B. Pasquiou et. al., Phys. Rev. Lett. **106**, 255303 (2011)
- A. Vogler et. al., Phys. Rev. Lett. **113**, 215301 (2014)

Radiation diagrams from two spins (double well)

(here without lattice potential for the bath)

Severe anisotropy and collective spin dependence

Example : rate from $S_{\text{tot}} = 1$, m = 0 to $S_{\text{tot}} = 0$, m = 0

Sz component of $|\langle f_{\text{spin}}; f_{\text{bath}} | H_{\text{int}} | i_{\text{spin}}; i_{\text{bath}} \rangle|^2$ (m conserving)

$$
|f_{\text{bath}}(\vec{q})\rangle = b^{\dagger}(\vec{q})| \text{BEC}\rangle
$$
 with $\epsilon(\vec{q})=J$

Analogous to spontaneous emission of light; Cooperative effects at play

 $\vec{q}\cdot\vec{a}=0$: global energy shift, no effect

Radiation diagrams from two spins (double well)

(here without lattice potential for the bath)

Severe anisotropy and collective spin dependence

Example : rate from $S_{\text{tot}} = 1$, m = 0 to $S_{\text{tot}} = 0$, m = 0

Sz component of $|\langle f_{\text{spin}}; f_{\text{bath}}| H_{\text{int}} | i_{\text{spin}}; i_{\text{bath}} \rangle|^2$ (m conserving)

$$
|f_{\text{bath}}(\vec{q})\rangle = b^{\dagger}(\vec{q})| \text{BEC}\rangle
$$
 with $\epsilon(\vec{q})=J$

Analogous to spontaneous emission of light; Cooperative effects at play

 $\vec{q}\cdot\vec{a}=0$: global energy shift, no effect

Shelving spectroscopy

Shelving spectroscopy of a narrow line

Mukayami et al, PRL 90, 113002 (2003): complications from the hyperfine structure

