Dissipative cooling of spin chains by a bath of dipolar particles

M. Robert-de-Saint-Vincent, P. Pedri, B. Laburthe-Tolra

Laboratoire de Physique des Lasers Centre national de la Recherche Scientifique, Université Paris 13

Quantum Technologies Conference IX, 12th September 2018

1

Magnetism with cold atoms

Various magnetic models implemented in cold atoms

Broad panel of physical questions : frustation (tunable geometries), large spin systems, interplay with transport (t-J model), …

Variety of magnetic interactions using ground state atoms, Rydberg state atoms, molecules, mappings. (spin-dependence, short- or long-range, anisotropy)

 \rightarrow Heisenberg, Ising, XXZ, and others...

Much studied : antiferromagnetic Heisenberg model from super-exchange in the Mott regime

$$
H = -J\sum_{i,j>}\vec{S}_i\vec{S}_j
$$
with $J \approx -4t^2/U$

Hulet, Greiner, Bloch, Zwierlein, Kohl, Esslinger, ...

An opportunity for open quantum systems

Many-body quantum systems = resources for quantum simulation and quantum computation

Dissipation ?

Modern research field : robust entanglement / correlations from engineered dissipation

Benatti et al, PRL 91, 070402 (2003) - Piani, Zoller, Cirac, … Rydbergs, ions

Many-body system, e.g. Rydberg gas Bath continuum (e.g., light)

An opportunity for open quantum systems

Many-body quantum systems = resources for quantum simulation and quantum computation

Dissipation ?

Modern research field : robust entanglement / correlations from engineered dissipation

Benatti et al, PRL 91, 070402 (2003) - Piani, Zoller, Cirac, … Rydbergs, ions

Ground state lattice magnetism usually in isolated systems

Strong motivation: the low entropy challenge (Mc Kay and DeMarco, 2011)

Ground state lattice gas Bath continuum (e.g., light)

An opportunity for open quantum systems

Many-body quantum systems = resources for quantum simulation and quantum computation

Dissipation ?

Modern research field : robust entanglement / correlations from engineered dissipation

Benatti et al, PRL 91, 070402 (2003) - Piani, Zoller, Cirac, … Rydbergs, ions

Ground state lattice magnetism usually in isolated systems

Strong motivation: the low entropy challenge (Mc Kay and DeMarco, 2011)

so far tackled by **inhomogeneous systems**

Ho 2009, Bernier 2009, Mathy 2012, Hart 2015, Mazurenko 2017, Kantian 2018 ...

Engineered spin dissipation proposals : growing literature proposing light as bath

Diehl 2010, Kaczmarczyk 2016, … Zoller, Weimer, ...

Our discussion: thermalize the spins with the phonons of an atomic bath (atomic mixtures)

3

The tool: dipolar interactions

The bath must be able to flip spins

Magnetic dipolar interactions – anisotropic – non spin conserving

4 *Includes non-spin conserving terms*

The tool: dipolar interactions

The bath must be able to flip spins

Dipolar quantum gases: Pfau, Laburthe-Tolra, Lev, Ferlaino, Grimm,

Dipolar relaxation enables true thermalization at free magnetization

Single-species Chromium experiment at LPL (Laburthe-Tolra)

Pasquiou et al, PRL **106**, 255303 (2011)

The gaz always reaches the energetically-favourable spin distribution

4

Outline

This talk:

Dipolar interactions between a spinfull Mott insulator and a dipolar BEC offer true thermalization of the spin degree of freedom of the Mott insulator

- *free magnetization* from a spin-orbit coupling mechanism
- dissipative preparation / protection of highly correlated states

Timescales : compatible with alkali spin chains

I) Overview of the physics

System overview A Fermi Golden rule treatment Anisotropic coupling to the bath

II) Realistic system – numerical calculation

Lattice potential effect on the bath Convergence to a thermal state Collective spin dynamics

System overview and simplifying assumptions

Bath: Bogoliubov description in the latttice; finite temperature.

Spin chains : finite size 1D chain (up to 7), exactly diagonalized, neglecting any hole/doublon

A Fermi Golden rule treatment

Dissipative evolution evaluated from the Fermi golden rule between collective spin chain eigenstates

$$
\Gamma_{i\to f} = \frac{2\pi}{\hbar} \sum_{|f_{\text{bath}}\rangle} |\langle f_{\text{spin}}; f_{\text{bath}} | H_{\text{int}} | i_{\text{spin}}; i_{\text{bath}} \rangle|^2 \delta(E_{if} + E_{if}^{\text{bath}})
$$
\n
$$
\frac{dp_i}{dt} = \sum_{f} (-\Gamma_{i\to f} p_i + \Gamma_{f\to i} p_f)
$$
\n
$$
E \blacktriangle
$$

Example : 2-atom spin chain, four collective states

Our work: Compute explicitly all these matrix elements, in realistic setting

Detailed calculation in NJP 20, 073037 (2018)

Species: alkali + dipolar. Here, **⁴⁰K as spin chain, ¹⁶⁴Dy as highly dipolar species (10 µ^B)***

** Ravensburger et. al., Phys. Rev. Lett. 120, 223001 (2018)*

Radiation diagrams from two spins (double well)

(here without lattice potential for the bath)

Severe anisotropy and collective spin dependence

Example : rate from $S_{\text{tot}} = 1$, m = 0 to $S_{\text{tot}} = 0$, m = 0

Sz component of $|\langle f_{\text{spin}}; f_{\text{bath}} | H_{\text{int}} | i_{\text{spin}}; i_{\text{bath}} \rangle|^2$ (m conserving)

 $|f_{\text{bath}}(\vec{q})\rangle = b^{\dagger}(\vec{q})|BEC\rangle$ with $\epsilon(\vec{q})=J$

Radiation diagrams from two spins (double well) $\qquad \qquad \bullet$ B

(here without lattice potential for the bath)

Severe anisotropy and collective spin dependence

Example : rate from $S_{\text{tot}} = 1$, m = 0 to $S_{\text{tot}} = 0$, m = 0

Sz component of $|\langle f_{\text{spin}}; f_{\text{bath}} | H_{\text{int}} | i_{\text{spin}}; i_{\text{bath}} \rangle|^2$ (m conserving)

$$
|f_{\text{bath}}(\overrightarrow{q})\rangle = b^{\dagger}(\overrightarrow{q})|{\text{BEC}}\rangle \quad \text{with} \quad \epsilon(\overrightarrow{q}) = J
$$

Single spin : Vdd(q)

Radiation diagrams from two spins (double well) $\qquad \qquad \bullet$ B

(here without lattice potential for the bath)

Severe anisotropy and collective spin dependence

Example : rate from $S_{\text{tot}} = 1$, m = 0 to $S_{\text{tot}} = 0$, m = 0

Sz component of $|\langle f_{\text{spin}}; f_{\text{bath}}| H_{\text{int}} | i_{\text{spin}}; i_{\text{bath}} \rangle|^2$ (m conserving)

$$
f_{\text{bath}}(\overrightarrow{q})\rangle = b^{\dagger}(\overrightarrow{q})| \text{BEC}\rangle
$$
 with $\epsilon(\overrightarrow{q})=J$

Single spin : Vdd(q)

 $\vec{q}\cdot\vec{a}=0$: global energy shift, no effect

Radiation diagrams from two spins (double well) $\qquad \qquad \bullet$ B

(here without lattice potential for the bath)

Severe anisotropy and collective spin dependence

Radiation diagrams from two spins (double well) $\qquad \qquad \bullet$ B

(here without lattice potential for the bath)

Severe anisotropy and collective spin dependence

q

Radiation diagrams from two spins (double well) $\qquad \qquad \bullet$ B

(here without lattice potential for the bath)

Severe anisotropy and collective spin dependence

q

Outline

This talk:

Dipolar interactions between a spinfull Mott insulator and a dipolar BEC offer true thermalization of the spin degree of freedom of the Mott insulator

- *free magnetization* from a spin-orbit coupling mechanism
- dissipative preparation / protection of highly correlated states

Timescales : compatible with alkali spin chains

I) Overview of the physics

System overview A Fermi Golden rule treatment Anisotropic coupling to the bath

II) Realistic system – numerical calculation

Lattice potential effect on the bath Convergence to a thermal state Collective spin dynamics

Lattice potential: strong effect on the bath

⁴⁰K - ¹⁶⁴Dy

Given a lattice depth for the spin chain,

In the vicinity of 624 nm (Dy) **the lattice depth for the bath can be independently tuned**

 10 Same opportunity for Erbium in the vicinity of 580 nm

Convergence to a thermal state of the collective spin

⁴⁰K - ¹⁶⁴Dy

 40 K, F = 9/2, restricted to m =-9/2 and -7/2, made degenerate 1 U_K = (25x25x3.5) E_r^K – effective decoupled 1D chains Weak axis : U_{in}/t = 7.5, J = h x 630 Hz = k $_{\rm B}$ x 30 nK

$$
U_{Dy} = (12 \times 12 \times 3.5) E_{r}^{Dy}
$$

\n
$$
\langle n_{bec} \rangle = 3.10^{13} / \text{ cm}^3
$$

\n
$$
T_{BEC} = 0.3 \text{ J} / k_B = 9 \text{ nK} \text{ [Trotzky 2010, Nat. Phys. 6,998]}
$$

\n3D coherent BEC - Quantum depletion : 5 % [Xu 2006, PRL 96, 180405]

Chain Length : 7

Convergence to a thermal state of the collective spin

 \overline{B}

Laser:

Laser

⁴⁰K - ¹⁶⁴Dy

 40 K, F = 9/2, restricted to m =-9/2 and -7/2, made degenerate 1 U_K = (25x25x3.5) E_r^K – effective decoupled 1D chains Weak axis : U_{in}/t = 7.5, J = h x 630 Hz = k $_{\rm B}$ x 30 nK

$$
U_{Dy} = (12 \times 12 \times 3.5) E_{r}^{Dy}
$$

\n
$$
\langle n_{bec} \rangle = 3.10^{13} / \text{ cm}^3
$$

\n
$$
T_{BEC} = 0.3 \text{ J} / k_B = 9 \text{ nK} \text{ [Trotzky 2010, Nat. Phys. 6,998]}
$$

\n3D coherent BEC - Quantum depletion : 5 % [Xu 2006, PRL 96, 180405]

Occupation of the 2⁷ = 128 spin chain eigenstates

Initially balanced spin mixture

Von Neumann spin entropy

$$
S = -\sum_i p_i \log(p_i)
$$

Initially balanced spin mixture

Equilibration rate tends to a

value roughly independent on chain length and on preparation condition

Equilibration rate tends to a value roughly independent on chain length and on preparation condition

Timescale of order ~ 1 s – experimentally relevant, though not fast

Limited by restraining ourselves to very low quantum depletion (5%) Faster dynamics plausible in deeper bath lattices, but this leaves the validity range of the Bogoliubov description

> Dysprosium vs Erbium : about similar (7 $\mu_{_{\rm B}}$, but also 583 nm lattice) Alkali: ⁴⁰K has low Lande factor, but scientific interest of fermions for the t-J model

Conclusion and outlook

Dissipative preparation of strongly correlated spin states

Use of an atomic bath

Spin chain thermalization with free magnetization

The scheme relies on spin-orbit coupling in Vdd

→ **perspective**: cooling with a non-dipolar atomic bath using artificial SOC?

Spielman, Zwierlein, Zhang, Pan ...

A formalism describing dipole-coupled Mott spin chain and SF BEC in lattice

 \rightarrow useful beyond Heisenberg chains (e.g., mixtures of dipolar isotopes in lattices)

Ferlaino, Lev, Pfau, Laburthe-Tolra, ...

- \rightarrow other spinor species of interest (bosonic alkalis with higher Lande factor than 40 K)
- → **perspective**: set the formalism for a conducting **fermionic bath** (large density of states at the Fermi energy, with large excitation wavevector)

Thank you for your attention

M. Robert-de-Saint-Vincent, B. Laburthe-Tolra, P. Pedri New Journal of Physics 20, 073037 (2018)

Laboratoire de Physique des Lasers Centre National de la Recherche Scientifique, Université Paris 13

ANR, DIM Nano'K, DIM Sirteq, IFRAF, IFCPAR

Magnetic Quantum gases group at LPL (Laburthe-Tolra's group):

Two experiments : Strongly dipolar Chromium gases $SU(N \leq 10)$ symmetric Strontium gases – new machine One theory team on large spin quantum gases

WE LOOK FOR A POST-DOC ON THE STRONTIUM MACHINE A PHD ON THE CHROMIUM MACHINE

Narrow-line Sr MOT and dipole trap: spring 2018

Objectives: SU(N) Quantum magnetism Narrow-line manipulation tools

Microwave dressing

F. Gerbier et. al., Phys. Rev. A. **73**, 041602 (2006)

Lattice potential: strong effect on the bath

Enhanced interactions : very sensitive to anisotropies

Dispersion relation : wavevectors and density of states

Coupling strength for a given mode q

Mode decomposition onto plane waves vs Vdd anisotropy

Radiation diagram in lattice

Correlations

Robustness of the AF state to a bias Δ

References

- M. Cazalilla, A. Ho, and T. Giamarchi, New J. Phys. **8**, 158 (2006)
- S. Diehl et. al., Phys. Rev. Lett. **105**, 227001 (2010)
- F. Gerbier et. al., Phys. Rev. A. **73**, 041602 (2006)
- Hart et. al., Nature **519**, 211 (2015)
- J. Kaczmarczyk, H. Weimer, and M. Lemeshko, New J. Phys. **18**, 093042 (2016)
- Mazurenko et al., Nature **545**, 462 (2017)
- Mathy et. al., Phys. Rev. A **86**, 023606 (2012).
- B. Pasquiou et. al., Phys. Rev. A **81**, 042716 (2010)
- B. Pasquiou et. al., Phys. Rev. Lett. **106**, 255303 (2011)
- A. Vogler et. al., Phys. Rev. Lett. **113**, 215301 (2014)