Magnetization dynamics in chromium BECs at low and ultra-low magnetic field

UNIVERSITÉ PARIS 13

B. Pasquiou (PhD), G. Bismut (PhD), A. de Paz B. Laburthe, <u>E. Maréchal</u>, L. Vernac,

- P. Pedri, M. Efremov (Theory),
 - O. Gorceix (Group leader)

Laboratoire de Physique des Lasers Université Paris Nord

Interactions in BECs

Van der Waals / contact interactions : short range and isotropic at low T

Effective potential $a_S \delta(R)$, with $a_S =$ scattering length in channel S, a_S is magnetically tunable through Feshbach resonances

Dipole-dipole interactions : long range and anisotropic magnetic atoms **Cr**, Er, Dy; dipolar molecules; Rydberg atoms

Chromium atoms carry a magnetic moment of 6\mu_B

Magnetic Dipole-Dipole Intereactions are 36 times bigger than in alkali BECs

We produce and study ⁵²Cr Bose-Einstein Condensates

PART ONE OF THE TALK :

DIPOLAR RELAXATION INHIBITION at low magnetic field (few 10 mG) when the BEC is loaded into an optical lattice.

How a 2D lattice can stabilize an unstable BEC ?

Inelastic collisions - dipolar relaxation DR

$$V_{dd}(\vec{r}) = \frac{\mu_0 \left(g_J \mu_B\right)^2}{4\pi} \frac{\hat{s}_1 \cdot \hat{s}_2 - 3 \left(\hat{s}_1 \cdot \vec{u}_r\right) \left(\hat{s}_2 \cdot \vec{u}_r\right)}{r^3}$$
Conservation of the total angular momentum
= 2 channels : (S=3, m=+3 Cr atoms)
$$|+3,+3,\ell=0,m_\ell=0\rangle \xrightarrow[]{(0)} \frac{|+3,+2\rangle + |+2,+3\rangle}{\sqrt{2}} |\ell=2,m_\ell=1\rangle$$
$$\overrightarrow{v} \qquad \overrightarrow{v} \qquad\overrightarrow{v} \qquad \overrightarrow{v} \qquad \overrightarrow{v} \qquad\overrightarrow{v} \overrightarrow{v} \qquad\overrightarrow{v} \overrightarrow{v} \qquad\overrightarrow{v} \overrightarrow{$$

 During dipolar relaxation, Zeeman energy is released and also orbital momentum of the two collining particules is changed.

$$\frac{\hbar^2 k_f^{j^2}}{m} = \frac{\hbar^2 k_i^{j^2}}{m} + \Delta E^j \qquad \Delta m_s = -1 \qquad \Delta$$

$$\Delta m_s = -2 \qquad \Delta$$

$$\begin{array}{l} \Delta E = g \mu_B \ B \\ \Delta E \ = 2 g \mu_B \ B \end{array} \Delta \ell = 2 \end{array}$$

Angular conservation Induces rotation in the BEC 7

Spontaneous creation of vortices ?

Einstein-de-Haas effect

Ueda et al; Phys. Rev. Lett. 96, 080405 (2006))

Reduction of dipolar relaxation in optical lattices

$$\hbar\Gamma \approx \left|V_{dd}\right|^2 \rho(\varepsilon_f)$$

One expects a reduction of dipolar relaxation, as a result of the reduction of the density of states in the lattice

Dipolar relaxation inhibition in 1D (below B_c)

Below Bc the dipolar relaxation rate is reduced by 10³ compared with 3D

Spin relaxation and band excitation in 1D

Bc ≈ 40 mG

PART TWO OF THE TALK

SPONTANEOUS DEMAGNETIZATION OF A SPINOR BEC

What happens at extremely low magnetic fields ? ie when $g\mu_B B \langle \mu_B$

This happens for **B < few 100 microG**

S=3 Spinor physics with free magnetization

- To date, spinor studies have been restricted to S=1 and S=2
- -Up to now, all spinor dynamics studies were restricted to

constant magnetization

As required by contact interactions

- eg in Rb a pair of colliding atoms stays in the $M = m_{S1} + m_{S2} = 0$ multiplicity

New features with Cr

-First **S=3 spinor**

Dipole-dipole interactions <u>free</u> the magnetization

 Possible investigation
 of the true many-body ground state of the system
 (which requires stable and very small magnetic fields)

S=3 Spinor physics with free magnetization

energy compensates for the

loss in Zeeman energy)

DDI **ensure the coupling between** states with different magnetization

At VERY low magnetic fields, spontaneous depolarization of 3D and 1D quantum gases

Experimental procedure

Mean-field effect: when does the transition take place ?

$$g_J \mu_B B_c \approx \frac{2\pi\hbar^2 n_0 \left(a_6 - a_4\right)}{m}$$

	BEC	Lattice
Critical field	0.26 mG	1.25 mG
Demag time	3ms	10ms

Magnetic field control below 0.5 mG (actively stabilized)

Critical field for depolarization depends on the density (exp check for linearity) (0.1mG stability) (no magnetic shield...)

Dynamics analysis

In lattices (in our experimental configuration), the volume of the cloud **is multiplied by 3**

Mean field due to dipole-dipole interaction is reduced

Slower dynamics, even with higher peak densities

Non local character of DDI

Conclusion

Dipolar relaxation in reduced dimensions:

- almost-suppression of DR

- towards Einstein-de-Haas rotation in lattice sites (PRL 106, 015301 (2011))

Spontaneous demagnetization in a quantum gas:

- phase transition
- first steps towards spinor ground state(
 PRL 106, 255303 (2011))
- Spinor thermodynamics with free magnetization (see POSTER session)

Ferromagnetic phase of the spinor condensate

when $B \approx 4 \text{ mG}$ the chemical potential is much smaller than the Zeeman splittings

Starting point : BEC in the m= -3 single particle ground state Procedure: lower B for example to 1mG Detection TOF + Stern-Gerlach

Ferromagnetic / polarized phase

Above threshold

Spontaneous demagnetization of the spinor condensate

when the final $B \approx 0.4 \text{ mG}$

then the chemical potential becomes on the order of Zeeman splittings

Starting point : BEC in the m = -3 single particle ground state Procedure: lower the magnetic field Detection TOF + Stern-Gerlach

...spin-flipped atoms gain energy

Below threshold

Above threshold

Dynamics analysis

At short times, transfert between $m_s = -3$ and $m_s = -2$

 $^{\sim}$ a two level system coupled by $V_{\rm dd}$

few atoms in $m_s = -2$, so collision only in a_6

Ueda, PRL 96, 080405 (2006) / Kudo Phys. Rev. A 82, 053614 (2010)

Mean-field effect

 $R_c > a_{\perp}$

$$g_J \mu_B B_c \approx \frac{2\pi\hbar^2 n_0 \left(a_6 - a_4\right)}{m}$$

	BEC	Lattice
Critical field	0.26 mG	1.25 mG
1/e fitted	0.4 mG	1.45 mG

Critical field value for depolarization depends on density

Optical lattices : change only the density, not the symetry for DDI

Inelastic collisions - dipolar relaxation DR

2 possible channels for initialy (S=3, m_s =3= atoms)

 $\begin{vmatrix} +3,+3,\ell=0,m_{\ell}=0 \end{pmatrix} \xrightarrow{(1)} \frac{|+3,+2\rangle^{\frac{1}{2}}+|+2,+3\rangle}{\sqrt{2}} | \ell=2,m_{\ell}=1 \rangle$ $\xrightarrow{(2)} \rightarrow |+2,+2,\ell=2,m_{\ell}=+2\rangle$

$$\Delta E = g\mu_B B \Delta \ell = 2$$
$$\Delta E = 2g\mu_B B$$

Angular momentum conservation Induces rotation in the BEC ? Spontaneous creation of vortices ? Einstein-de-Haas effect Ueda et al; Phys. Rev. Lett. 96, 080405 (2006)