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Contact interactions in a standard condensate  

(one single internal state) 
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The non-linear term spawns various interesting effects 

vortex, 

solitons, Josephson-like physics, squeezing,  

non-linear (atomic) optics …  

  



Two types of interactions between cold atoms  

Interactions Van der Waals / contact :  

     short range and isotropic  

Effective potential  aS d(R) , where aS = scattering length,  

   

Dipole-dipole interactions : long range and anisotropic  

 magnetic atoms Cr, Er, Dy ; dipolar molecules ; Rydberg atoms 
 

Chromium atoms carry a magnetic moment of 6µB   
 

MDDI are 36 times greater than in alkali  BECs  

 

  edd (Cr)=0,159 compared to edd (Rb)=0,0044   

 

edd = ratio : dipolar interactions / contact interactions   
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Dipole-dipole interactions 
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Links with magnetism, 

 

Phases, 

Frustration, …   

 

 

 

 

Coupling  

Between 

 spin and rotation   
 

Side to side  

repulsion 

head to tail attraction  

Least energy configuration 



dipole-dipole interactions  

Non local 
Anisotropic 
mean field 

The two types  of interactions in a single state condensate 
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Non-linear non-local and anisotropic  

terms enlarge  the possible research opportunities. 



Spin Exchange and dipolar relaxation DR  

in a multi-componant condensate - SPINOR 
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Spin Exchange  

Inelastic collisions 

dipole-dipole interaction and spin operators : 

Various types of collisions: 
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Magnetisation is constant except for inelastic collisions 

Strong heating 





Angular momentum conservation 

implies rotation?  

 

Spontaneous creation of vortices ? 

Einstein-de-Haas effect 

21 or

0 lS mm

Two channels are open for 

two atoms in m = +3 

Inelastic Collisions –  

Induced rotation 
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 « spinor » physics: 

 

 combines  

 

On one hand, superfluidity   

 

and 

 

On the other hand, magnetism  

  

Why do we care for spinors ? 



The experimental setup 

… well … Part of it !!… 



  

 

 

INHIBITION OF DIPOLAR RELAXATION  

 

Stabilisation of the spinor gas   

by confinement  

in optical lattices 
 

 

 



DR causes heating and losses ;  

B controls DR rate 

BgmE BS 

Inelastic Collisions – dipolar relaxation DR 
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Zeeman energy 

ladder in B field 

To start with one must prepare BEC in m = -3.  

When  atoms are brought to  +3  

or any combinaison of m’s > -3, one loses the BEC in a few milliseconds ?  

How could we get a stable spinor ? Set B extremely low  (< 0,5 mG = 5 nT) 

Or trap the BEC in optical lattices (2D , 1D or even 0D ie at the nodes of 3D OL) ?  
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Below threshold: a metastable quantum gas in a spin excited state 

(energy >> chemical potential) is produced ; 

Spinor Physics,  spin excitations in 1D… 



B ≈ 40 mG Atoms whose spin flips are promoted  

from the fondamental band to the excited band  

as B becomes greater than the threshold value set by  

 

 

Below relaxation is forbidden. 
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Relaxation and band excitation – Inhibition mechanism 

LBBg  

L
B 



Magnetism in a 3D optical lattice  
 

- Coherent vs incoherent  spin dynamics 

We load the BEC into  

anisotropic 3D lattices 



A NEW dipolar effect 

Dipolar relaxation resonances with 2 (or more) atoms in m = +3 per site 
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Dipolar relaxation occurs when the released 

energy matches a band excitation. 

  

It couples |-3, -3> to different bands 

depending on B orientation . 

LBBg  

The combined anisotropies of the lattice and of the dipolar interaction  

account for the anisotropy of the relaxation spectra = remaining atoms vs B  

for two orthogonal orientations  

Hold time 30 ms 

Here y / 2 = 55 kHz 



Dipolar relaxation resonance with 2 atoms per site 

Magnetic field (kHz)
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Dipolar relaxation occurs 

when the released energy 

matches the band excitation   

  

 

 LBBg  

Hold time 12 ms 

Here y / 2 = 42 kHz 



Dipolar relaxation resonance with 2, 3  or more atoms per site 



From now, we forbid dipolar relaxation  

By setting B below 15 mG (lowest resonance in the deep OL) 

 

Magnetization remains constant 

 

All interactions are elastic 

 

Spin dynamics is coherent 

 

We study a S=3 spinor in a 3D lattice 

Typically 40 x 40 x 40 sites 

S = 3 Spinor physics 



Interactions  

redistribute  

populations 

Adiabatic preparation of a condensate in m = -2 with two atoms par site 
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We monitor spin composition as time goes  
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Spin Exchange  

within doubly occupied sites  
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(theory 250 µs) 

Hold time 
due to contact interactions 

(period  220 µs) 

Tunneling causes damping (still  to fully analyse) 

Preparation : 2 atoms per site 
| -2 ; -2> = a|6, -4> + b | 4, -4> 
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Spin dynamics in a 3D lattice 

with  

1 single atom per site (or less) 
Hold time 

Intersite spin 

redistribution  
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Coherent evolution at long time –  

inter-site coupling by dipolar interaction  

For doublons 

the oscillation time scale  

rules out intra-site interactions 

 

 

 

 

 

A toy model  

with 2 atoms in 2 wells 

+ dipolar interaction   

accounts for this time scale 

 

Preparation : 2 atoms per site  

Preparation : 1 single atom per site  



Summary 

  Inhibition of Dipolar Relaxation in reduced dimensions –  

   SPINOR Physics with S = 3 
   

 Coherent spin dynamics + inter-site dipolar interactions  

  

 Spontaneous demagnetization   
  -phase transition; 

  -thermodynamics of a spin 3 gas with free magnetization  

   

Outlook      

 

In situ imaging – Spin Textures  – dynamics of magnetic domains  

   quantum magnetism simulation (in 2D + lattice) 
 

Einstein-de-Haas effect in a gas  

 

Production of a dipolar Fermi sea with 53Cr 

 

New exotic magnetic phases 
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