Emergent Quantum Phenomena Heidelberg - March 11, 2014

Spin dynamics in a dipolar lattice gas

Laboratoire de Physique des Lasers Université Paris 13, Sorbonne Paris Cité Villetaneuse - France

Two types of interactions between cold atoms

Interactions Van der Waals / contact :

short range and isotropic

Effective potential $\mathbf{a}_{S} \delta(\mathbf{R})$, where \mathbf{a}_{S} = scattering length,

<u>Dipole-dipole interactions</u> : long range and anisotropic

magnetic atoms **Cr**, Er, Dy ; *dipolar molecules ; Rydberg atoms*

Chromium atoms carry a permanent magnetic moment of $6\mu_B$

MDDI are 36 times greater than in alkali BECs

 ε_{dd} = ratio : dipolar interactions / contact interactions ε_{dd} (Cr)=0,159 compared to ε_{dd} (Rb)=0,0044

$$\varepsilon_{dd} = \frac{\mu_0 \mu_m^2 m}{12\pi\hbar} \propto \frac{V_{dd}}{V_{dd}}$$

a good platform to study the interplay between the two interactions

Links with **magnetism**, liquid crystal physics, rich phase diagrams, quantum info processing.

Coupling between spin and rotation

The two types of interactions in a Cr condensate

GPE / NLSE:

$$-\frac{\hbar^2}{2m}\Delta\psi + \left(V_{ext} + g_c |\psi|^2 + \phi_{dd}\right)\psi = \mu \psi$$

Contact interaction

 $g_{c} = \frac{4\pi \ \hbar^{2}}{m} a_{s}$ Local
mean field

dipole-dipole interactions

$$\phi_{dd}(\vec{r}) = \int V_{dd}(\vec{r} - \vec{r}') n(\vec{r}') d^3 \vec{r}'$$

$$V_{dd}(\vec{r}) = \frac{\mu_0}{4\pi} {\mu_m}^2 \frac{1 - 3\cos^2\theta}{r^3}$$

$$\mu_m = J g_J \mu_B$$

 $\vec{\mu}_{m1} \qquad \vec{\mu}_{m2}$ $\vec{\mu}_{m1} \qquad \vec{\mu}_{m2}$ $\vec{\mu}_{m1} \qquad \vec{\mu}_{m2}$ $\vec{\mu}_{m1} \qquad \vec{\mu}_{m2}$ \vec{r}

Non local Anisotropic mean field

R

Non-linear non-local and anisotropic

terms enlarge the possible research opportunities.

For **Cr BECs** with spin S = 3, Ψ comprises 2 S + 1 = 7 spin components

Spin dynamics in a Cr BEC

driven by dipole-dipole interactions

Coherent Spin dynamics in a Cr BEC

When inelastic terms are prohibited

$$V_{dd}(\vec{r}) = \frac{\mu_0 (g_J \mu_B)^2}{4\pi} \frac{\hat{s}_1 \cdot \hat{s}_2 - 3 (\hat{s}_1 \cdot \vec{u}_r) (\hat{s}_2 \cdot \vec{u}_r)}{r^3}$$

Spin operators reduce to : **XY / Spin Exchange**
ISING
$$S_{1z}S_{2z} + \frac{1}{2} (S_1^+ S_2^- + S_1^- S_2^+) \Delta m_{S \ tot} = 0$$

First experimental study of **spin-3 spinor physics**

To start with **one must** produce the Cr BEC in m = -3.

When atoms are **brought to +3**

or any combinaison of m's > -3, one loses the BEC in a few milli-seconds ?

How do we get a stable S=3-spinor ?

Set **B** extremely low (< 0,5 mG = 5 nT) see our work in PRL 2012

Or trap the BEC in optical lattices (2D, 1D or even 0D ie at the nodes of 3D OLs)

INHIBITION OF DIPOLAR RELAXATION

Collisional stabilisation of the **spinor quantum gas**

by confinement in optical lattices

Relaxation and band excitation – Inhibition mechanism

B ≈ 40 mG bandgap about 120kHz

Atoms whose spin flips are promoted from the fondamental band to the excited band as B becomes greater than the threshold value set by

$$g\mu_B B = \hbar\omega_L$$

Below relaxation is energetically forbidden.

Half-time slide: The experimental setup

... well ... Part of it !!...

Magnetism in a 3D optical lattice

Coherent and incoherent spin dynamics

Tight confinement in an anisotropic 3D lattices Green 532nm light

Typical parameters Depth 30 Erec Band gaps:60 to 200 kHz U / 2π about 10 kHz J / 2π about 10 Hz

about 20 000 atoms Mott state : a core of doublons + a shell of singlons

Detect m's populations

Another dipolar effect in a dilute medium Dipolar relaxation resonances with 2 (or more) atoms in m = +3 per site

The combined anisotropies of the lattice and of the dipolar interaction account for the anisotropy of the relaxation spectra = remaining atoms vs **B** for two orthogonal orientations

-3 Hold time 30 ms Here $\omega_y / 2\pi = 55$ kHz

Dipolar relaxation occurs when the released energy matches a band excitation.

It couples |-3, -3> to **different bands depending on B orientation**.

de Paz et al, PRA 87, 0516090 (2013)

Dipolar relaxation resonance with 2 atoms per site

B values to inhibit inelastic processes and others to get rid of doublons...

0000000000
0000000000
00000000000
000 <u>6666</u> 000
000 <u>6666</u> 000
000 <u>6666</u> 000
00000000000
0000000000

S = 3 Spinor physics

From now, we forbid dipolar relaxation By setting B below 15 mG (lowest resonance in the lattice)

Magnetization remains constant

All interactions are elastic

Spin dynamics is coherent

We study a S=3 spinor in a 3D lattice with Vdd @ 266 nm equal to h * 25 Hz

Super-exchange 0.1 Hz

Typically 40 x 40 x 40 sites

Final stages - after release : Stern Gerlach separation + TOF + absorption imaging

Tunneling causes damping + imperfect starting conditions

Long time-scale spin dynamics in lattice : intersite dipolar exchange with doublons

 $(S_{1+}S_{2-} + S_{1-}S_{2+})$

Spin dynamics in a 3D lattice with 1 or 2 atoms per site (or less)

doublons

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0

 P_{-3}/P_{-2}

Singlon dynamics : Good agreement with 3 x 3 plaquette simulation

(time scale \leftrightarrow 5 to 30 ms)

de Paz et al, PRL 111, 185305 (2013)

Summary

Inhibition of Dipolar Relaxation in reduced dimensions – \rightarrow SPINOR physics with S = 3

Coherent spin dynamics - evidence for inter-site dipolar interactions

Other past results

Spontaneous demagnetization at low field
-phase transition;
-thermodynamics of a spin 3 gas with free magnetization

Outlook - our current on-going projects

In situ imaging – Spin Textures – dynamics of magnetic domains \rightarrow quantum magnetism simulation (in 2D + lattice) Double well trap with opposite polarizations Production of a dipolar Fermi sea with ⁵³Cr 4µm

+ (just starting)87Sr in optical lattices for quantum magnetism

Cold Atom Team (GQD) in Villetaneuse - Paris Nord

PhD students :

Aurélie de Paz and Bruno Naylor

<u>Post-docs :</u> Amodsen Chotia and Arijit Sharma

Permanent members :

Bruno Laburthe-Tolra, Etienne Maréchal, Paolo Pedri (theory), Laurent Vernac and O. G.

Collaborations :

Johnny Huckans, Mariusz Gajda and Luis Santos

Dipolar Quantum Gas Team

www-lpl.univ-paris13.fr:8082

OG, L. Vernac, J. Huckans (invited), P. Pedri, B. Laburthe, A. de Paz (PhD), A. Chotia (postdoc), A.Sharma (postdoc), E.Maréchal

State preparation in m = -2

Dipolar relaxation resonance with 2, 3 or more atoms per site

