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Using ground state atoms, Rydberg state atoms, molecules, ...

Varying the spin-dependence, interaction range, anisotropy... 

at LPL : Chromium (long-range anisotropic interactions) 
                    and Strontium (short-range isotropic interactions)

Hulet, Greiner, Bloch, Zwierlein, Kohl, Esslinger, ...

Implementing quantum magnetism models with ultracold atoms

H=− J∑
<i , j>

S⃗ i⋅S⃗ j

The strontium project at LPL

Relevant to both : antiferromagnetic Heisenberg model from super-exchange in the Mott regime

U
t t

2

J≈−4 t 2/Uwith

Heisenberg model of magnetism (effective spin model)
Tentative model for strongly correlated materials, and 

emergent phenomena such as high-Tc superconductivity



    

The strontium project at LPL

Fermionic Strontium 87 in optical lattices:
Quantum magnetism beyond spin 1/2 (electron) particles

Narrow atomic transitions: 
new control / probe  tools

Involving a metrology expertise (clock community)

   Spin 9/2;     SU(10) symmetry

Exploring magnetism with tunable spin degree of freedom
2 spin states: analogy to spin 1/2 electrons
3 spin states: analogy to quarks with three colours
Up to 10 spin states: no equivalent
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 > 5 states : underconstrained magnetism (frustration)

Hermele 2009, PRL 103, 135301

2 states: Neel order
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F = 11/2

F = 9/2

F = 11/2

F = 7/2

D ~ GHz

Two valence electrons
→ singlet and triplet electronic spin states

- narrow-line laser cooling (~µK)

- hyperfine structure: D >> g
Strong spin-dependent 
conservative forces

Effective magnetic fields;
 site-selective spin control

Clock
698 nm
~ mHz

87Sr : I = 9/2

The strontium project at LPL



    

Outline

1) Shelving spectroscopy of the strontium intercombination line
demonstrated on an atomic beam and a hot cell setups

→ applicable to most Sr experiments

2) Birth of the Strontium experiment
- a degenerate Fermi gas with 10 spin-states
- first experiments of coherent spin manipulation
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Spin-dependent adiabatic 
momentum transfer

ArXiv:1910.11718



    

Shelving spectroscopy of the intercombination line

Saturated absorption spectroscopy
 of a narrow line

Cell

Photodiode

Scattering rate ~ g

Signal ~ g²
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Number of atoms ~ g or W

Saturated spectroscopy
on the 7kHz wide Sr line

Li 2004, Applied Physics B 78, 315-320: Hot cell

Ferrari 2003, Phys. Rev. Lett. 91, 243002: Atomic beam
10^-11 relative frequency instability after integration

Ω/ kspectro

δ f /k spectro

Strength of the signal?



    

Shelving spectroscopy of the intercombination line

E.g. thermal Calcium beam clocks:
Kai-Kai 2006, Cinese Phys Lett 23, 3198
Mac Ferran 2009, Appl Phys Lett 95, 031103 

Cell

Photodiode

Scattering rate ~ g

Signal ~ g²

Scattering rate ~ G

Strontium: G/g = 4000Atoms

Number of atoms ~ g or W

Photodiode

spectroscopy readout
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Saturated absorption spectroscopy
 of a narrow line

Γ/kreadout

Shelving detection
δ f /k spectro

Strength of the signal?

Ω/ kspectro



    

Two independent setups

1) Directed thermal beam

Atoms

Photodiode

Well defined atomic beam direction
Separated interrogation and readout: compatible with Ramsey schemes

Frequency-modulated
spectroscopy

fixed-frequency
readout
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Two independent setups

Completely independent setup: lasers, detection electronics...

Isotropic velocity distribution
Locally overlapped interrogation and readout
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2) Hot vapour cell



    

Doppler spectrum overview

Fluorescence rate ~ G
Number of atoms ~ g or W

Doppler spectroscopy
of atoms with k

readout
 v < G

k
spectro

 v < W

along laser
beams

v x

Ω/ kspectro

Γ/kreadout

Optimal modulation amplitude (next slide):
the Doppler spectrum becomes negligible

Three lines: s+, s-, and cross-over (p)
g µ B / h = 7 MHz9

δ f /k spectro



    

SubDoppler line – atomic beam

Transit broadening
10

Lorentzian FWHM : 110 kHz 

Contributions:

I = 83 Isat → W = 50 kHz
power broadening FWHM ~ 70 kHz

Modulation amplitude (p-p) 66 kHz 

Transit broadening, FWHM : ~ 50 kHz

Fixed modulation
amplitude 
25 kHz p-p

Optimal modulation
amplitude 
scaled



    

SubDoppler line – atomic beam

Modulation amplitude
scaled with linewidth  
(0.8 FWHM, p-p)

Frequency instability:
   Lowest when power-broadening dominates    
   over transit broadening 

   High intensities: baseline drifts and 
lineshape distortion

                 

Optimal at 100 Isat; 
Fit precision statistically consistent with 
the short-term instability and the sampling 
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Lorentzian FWHM : 110 kHz 

Contributions:

I = 83 Isat → W = 50 kHz
power broadening FWHM ~ 70 kHz

Modulation amplitude (p-p) 66 kHz 

Transit broadening, FWHM : ~ 50 kHz



    

Performances – atomic beam

11

Lock-in amplifier integration time 1s

Frequency instability at 1s (1-shot) : 1,2 kHz
Relative freq instability at 1s: 2 10^-12

Fit uncertainty 450 Hz
(statistically consistent with the sampling)



    

Performances – atomic beam

Technically limited performances; 
what could be the fundamental limit?

SNR (thus also instability) a factor 10 behind 
atomic shot noise limitation : 2 10^-13 at 1s

Spectrum at only 7% readout absorption 
Very strong improvement achievable by reaching 
to high densities : 3 10^-14 at 1s

Absorption

S
N

R
S

ig
na

l  
Atomic and photonic
shot noises

Very similar to Ca-beam clocks, 
e.g. McFerran 2009: 7 10^-14 at 1s 

200

0,07

Theoretical estimates
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Lock-in amplifier integration time 1s

Frequency instability at 1s (1-shot) : 1,2 kHz
Relative freq instability at 1s: 2 10^-12

Fit uncertainty 450 Hz
(statistically consistent with the sampling)



    

Applicability to a hot cell

Lineshape robustness:

Typical transit time 8 µs << 1/g = 21 µs: 
coherent evolution.

The shape still remains close to Lorentzian,
due to velocity averaging

→ strong stability of the lineshape with I

Reproduction of the same spectrum, 
at same I/Isat.

12

velocities

Lasers Photodiode



    

Applicability to a hot cell

Lineshape robustness:

Typical transit time 8 µs << 1/g = 21 µs: 
coherent evolution.

The shape still remains close to Lorentzian,
due to velocity averaging

→ strong stability of the lineshape with I

Compactness and source lifetime:

- No signal degradation nor shift vs pressure
         up to 10^-3 mbar of Argon: no need for pump

- Absorption 80% despite 100K lower temperature

Reproduction of the same spectrum, 
at same I/Isat.

12

T = 480 °C

T = 390 °C



    

Applicability to a hot cell

Lineshape robustness:

Typical transit time 8 µs << 1/g = 21 µs: 
coherent evolution.

The shape still remains close to Lorentzian,
due to velocity averaging

→ strong stability of the lineshape with I

Compactness and source lifetime:

- No signal degradation nor shift vs pressure
  up to 10^-3 mbar of Argon: no need for pump

- Absorption 80% despite 100K lower temperature

Robust against first order Doppler shift

Reproduction of the same spectrum, 
at same I/Isat.

Atoms

spectroscopy

k⃗1⋅v⃗= k⃗2⋅⃗v≠0
Beam : 50 µrad → 10 kHz shift (and similar broadening)
Cell: symmetric velocity distribution → only broadening12

T = 480 °C

T = 390 °C



    

Concluding remarks

A robust solution, demonstrated on two fully independent setups:
Atomic beam with separated interrogation zone, 

and
Hot cell with overlapping beams

13

Shelving detection easily applicable to all strontium experiments

ArXiv:1910.11718



    

Concluding remarks

A reference of metrological interest?
  

    - short-term instability:  achieved 2 10^-12 at 1s (beam setup)
              achievable 3 10^-14 at 1s with same setup 

Many ideas of Ca-beam clocks should be identically applicable 
(Mc Ferran2009, Shang 2017) 

→ perspectives similar to Ca-beam clocks, as low-cost clock

A robust solution, demonstrated on two fully independent setups:
Atomic beam with separated interrogation zone, 

and
Hot cell with overlapping beams

13

Shelving detection easily applicable to all strontium experiments

[Kürzig group project: a transportable Sr Ramsey clock]

ArXiv:1910.11718



    

Outline

1) Shelving spectroscopy of the strontium intercombination line
demonstrated on an atomic beam and a hot cell setups

→ applicable to most Sr experiments

2) Birth of the Strontium experiment
- a degenerate Fermi gas with 10 spin-states
- first experiments of coherent spin manipulation
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Spin-dependent adiabatic 
momentum transfer

ArXiv:1910.11718



    

Red MOT (1 μK)
689 nm
7.4 kHz

5s2 1S
0

5s5p 1P
1

5s4d 1D
2

1:50 000

1:3

J = 2
J = 1
J = 0

(2017)

Birth of the strontium experiment

(May 2018)

5s5p 3P
j

Blue MOT (1 mK)
461 nm
30 MHz

88Sr

87Sr

5s6d 3D
j

J = 3
J = 2
J = 1

Repumping
403 nm

15 Cold and dense: in principle ideal for loading an optical trap



    

Laser cooling in light shifts from the dipole trap O(100 kHz)
    3 µK

1S0

3P1

1 mm

16

Beam 1

Beam 2

Loading stage sensitive to frequency drifts by O(10 kHz): 
stable referencing essential

Birth of the strontium experiment

E

x

E

x



    

Laser cooling in light shifts from the dipole trap O(100 kHz)
    2 µK

Evaporation

 

Since spring 2019 : Fermi gas with 10 spin states, 
     down to T/Tf ~ 0,2

1 mm

Loading stage sensitive to frequency drifts by O(10 kHz): 
stable referencing essential
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Birth of the strontium experiment

Gaussian residuals

T.o.f. picture

1S0

3P1

E

x

E

x



    

Spin state measurement

● Stern-Gerlach separation,

+ broad line imaging ?

 Impossible because of very small (purely nuclear) magnetic dipole moment.

How to spatially separate the spin states, 
before imaging on the broad line?

grad(B)

mF = -2

mF = -1

mF = 0

mF = 1

mF = 2

Alkali atoms

17



    

Spin state measurement

large gradients of spin-dependent light shifts 
applied for ~ 1ms

Requires specific lasers and beamshapes

We present an alternative scheme that
simply relies on the narrow-line MOT beams

Sr: Stellmer 2011, Phys. Rev. A 84, 043611

Yb: Taie 2010, Phys. Rev. Lett. 105, 190401

Established technique in this spirit: 
Optical Stern-Gerlach separation

18
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Spin state measurement

1S
0

3P
1

Spin-dependent momentum transfer

19



    

-9/2 -7/2 -5/2 -3/2 -1/2 1/2 3/2 5/2 7/2 9/2

Spin state measurement

Sr 87 after
evaporation

689 nm MOT beam 
drives σ+ transition

689 nm MOT beam 
drives σ- transition

mF = 7/2

After TOF:

Spin-dependent momentum transfer

19
Retroreflection

l/4

s-s+



    

-9/2 -7/2 -5/2

Sr 87 after
evaporation

Spin state measurement

689 nm MOT beam 
drives σ- transition
Frequency swept

mF = 7/2

fL

t

689 nm MOT beam 
drives σ+ transition
Frequency swept

4ER

|7/2, 0ℏkL⟩
|5/2, 1ℏkL⟩

t1

After TOF:

t2

fL2

fL1

|3/2, 2ℏkL⟩

fL1

fL2

1 MHz

(ER =ℏ2kL
2/2m)

Spin-dependent momentum transfer
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Retroreflection

l/4



    

-9/2 -7/2 -5/2

Sr 87 after
evaporation

Spin state measurement

689 nm MOT beam 
drives σ- transition
Frequency swept

f
L

t

689 nm MOT beam 
drives σ+ transition
Frequency swept

4E
R

|7/2, 2ℏkL⟩

|5/2, 1ℏkL⟩

t
1

After TOF:

t
2

f
L2

f
L1

|3/2, 0ℏkL⟩

f
L1

f
L2

m
F
 = 3/2

1 MHz

Spin-dependent momentum transfer
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-9/2 -7/2 -5/2

Sr 87 after
evaporation

Spin state measurement

689 nm MOT beam 
drives σ- transition
Frequency swept

f
L

t

689 nm MOT beam 
drives σ+ transition
Frequency swept

4E
R

|7/2, 2ℏkL⟩

|5/2, 1ℏkL⟩

t
1

After TOF:

t
2

f
L2

f
L1

|3/2, 0ℏkL⟩

f
L1

f
L2

m
F
 = 3/2

1 MHz

Spin-dependent momentum transfer
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Retroreflection

l/4

mF = 7/2

Two spin states separated in one run
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Sr 87 after
evaporation

Spin state measurement

689 nm MOT beam 
drives σ- transition
Frequency swept

m
F
 = 7/2

f
L

t

689 nm MOT beam 
drives σ+ transition
Frequency swept

t
1

After TOF:

t
2

f
L2

f
L1

|3/2, 2ℏkL⟩

|7/2, 0ℏkL⟩

|E, 5/2, 1ℏkL⟩

t

E

1 MHz

Adiabatic spin-dependent momentum transfer
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|3/2, 2ℏkL⟩

|7/2, 0ℏkL⟩

|E, 5/2, 1ℏkL⟩
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Sr 87 after
evaporation

Spin state measurement

689 nm MOT beam 
drives σ- transition
Frequency swept

m
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689 nm MOT beam 
drives σ+ transition
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Adiabatic spin-dependent momentum transfer
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Sr 87 after
evaporation

Spin state measurement

689 nm MOT beam 
drives σ- transition
Frequency swept
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Sr 87 after
evaporation

Spin state measurement

689 nm MOT beam 
drives σ- transition
Frequency swept
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Adiabatic spin-dependent momentum transfer
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Sr 87 after
evaporation

Spin state measurement

689 nm MOT beam 
drives σ- transition
Frequency swept
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689 nm MOT beam 
drives σ+ transition
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Adiabatic spin-dependent momentum transfer
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Spin state measurement

Adiabatic spin-dependent momentum transfer

-9/2 -7/2 -5/2

Sr 87 after
evaporation

689 nm MOT beam 
drives σ- transition
Frequency swept

m
F
 = 7/2

f
L

t

1 MHz
689 nm MOT beam 
drives σ+ transition
Frequency swept

t
1

After TOF:

t
2

f
L2

f
L1

|3/2, 2ℏkL⟩

|7/2, 0ℏkL⟩

|E, 5/2, 1ℏkL⟩

t

E

|3/2, 2ℏkL⟩

|7/2, 0ℏkL⟩

|E, 5/2, 1ℏkL⟩

“Grey” adiabatic state:  
spontaneous emission strongly suppressed 

through the atomic resonance

reminiscent of STIRAP
21

p(E)=
4 Er2

2Ω2

Adiabatic sweep duration
only depends on Er



    

-9/2 -7/2 -5/2 -3/2 -1/2 1/2 3/2 5/2 7/2 9/2

Spin state measurement

g

-9/2 -7/2 -5/2

Sr 87 after
evaporation

689 nm MOT beam 
drives σ- transition
Frequency swept

689 nm MOT beam 
drives σ+ transition
Frequency swept

After TOF:

m
F
 = 3/2

m
F
 = 7/2

Full population measurements

Two spin state populations measured in one run

22



    

-9/2 -7/2 -5/2 -3/2 -1/2 1/2 3/2 5/2 7/2 9/2

Spin state measurement

g

Sample from optical pumping procedure
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Full population measurements

Two spin state populations measured in one run



    

-9/2 -7/2 -5/2 -3/2 -1/2 1/2 3/2 5/2 7/2 9/2

Spin state measurement

Repeat sweep around 
several center frequencies
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Full population measurements



    

-9/2 -7/2 -5/2 -3/2 -1/2 1/2 3/2 5/2 7/2 9/2

Spin state measurement

Repeat sweep around 
several center frequencies

23

Full population measurements



    

-9/2 -7/2 -5/2 -3/2 -1/2 1/2 3/2 5/2 7/2 9/2

Spin state measurement

Repeat sweep around 
several center frequencies
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Full population measurements



    

Spin state measurement

Detuning (MHz)

-5/2 9/2

5/2

-3/2 -1/2 1/2 3/2 5/2 7/2

3/21/2-1/2-3/2-5/2-7/2-9/2

Average diffraction efficiency ~70% 
Mostly limited by laser intensity (4 mW/cm²) / small Clebsh Gordan coefficients
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Thank you for your attention

Manai, Duval, Bataille, Wiotte, Laburthe-Tolra, Maréchal, Robert-de-Saint-Vincent   
Laboratoire de Physique des Lasers

 

A. Molineri, C. Briosne-Fréjaville, R. Journet, F. Nogrette, M. Cheneau
Laboratoire Charles Fabry

ANR, FIRST-TF, DIM Nano’K, DIM Sirteq (IFRAF)

Birth of the strontium 87 experiment at LPL

Spin 9/2 Fermi gases at  T/Tf ~ 0.2

Shelving spectroscopy of the Sr intercombination line

25

Adiabatic spin-dependent momentum transfer

I. Manai, P. Bataille, A. Litvinov, J. Huckans, F. Wiotte, A. Kaladjian, O. Gorceix,
E. Maréchal, M. Robert-de-Saint-Vincent, B. Laburthe-Tolra

Simple scheme applicable to most Sr spectroscopy setups (cell and beam),
for a large signal enhancement
  

Demonstrated relative instability 2 10^-12 at 1s; expected limitations to a few 10^-14 at 1s, 
Offers perspectives for low-complexity frequency references

A free-space version of our ambitions inside the optical lattice:
coherent, position-dependent manipulations of the spin degree of freedom (S.O.C)

ArXiv:1910.11718
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Reproducibility



    



    

Narrow-line cooling of 88 Sr

July 2018: 88 Sr in a dipole trap

Tool: strong MOT compression by a frequency ramp

Laser cooling 
on a resonant shell

→ capture stage 
requires 
artificial line 
broadening

21

1S0

3P1

g

(+) (-)

z

E

Illustrations of specificities in narrow-line MOTs



  

    

Narrow-line cooling of 87 Sr 

From m = 9/2

1  55

E
ne

rg
y

55  1

- restoring force from Clebsh Gordan
- Only one side of the trap...

Enable spin state randomisation
Laser cooling on a second transition
with much lower Lande factor

Position

23

Mukayami et al, PRL 90, 113002 (2003): complications from the hyperfine structure

µ
g
 << µ

e

Relying on polarisation-dependent detunings, 
a restoring force for m could be ejecting for another

Zeeman level m

From m = -9/2



    

Doppler limit :   

Recoil limit: 

15

- narrow-line laser cooling (~µK)

k BT∼
h2

2mλ2
∼kB×460nK

k BT∼
ℏ Γ
2

∼kB×350nK

Reduced radiation trapping

Katori et al (1999) : 
free space MOT, 1012 / cm3 

      10-2 phase space density

In principle ideal for loading a 3D optical trap
Ido et al (2000), Stellmer et al (2013) :

Laser cooling in dipole traps to PSD’s of up to 1

Temperature

Density / Phase space density

(May 2018)88Sr

87Sr

Birth of the strontium experiment
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