ANR, FIRST-TF, DIM Nano'K, DIM Sirteq (IFRAF)

Shelving spectroscopy of the Sr intercombination line

Adiabatic spin-dependent momentum transfer in a degenerate Sr Fermi gas

M. Robert-de-Saint-Vincent

Laboratoire de Physique des Lasers, CNRS, Université Sorbonne Paris Nord

Laboratoire Charles Fabry, CNRS, Institut d'Optique, Université Paris Sud

Phlam – 21 January 2020

1

The strontium project at LPL

Implementing quantum magnetism models with ultracold atoms

Using ground state atoms, Rydberg state atoms, molecules, ...

Varying the spin-dependence, interaction range, anisotropy...

at LPL : Chromium (long-range anisotropic interactions) and Strontium (short-range isotropic interactions)

Relevant to both : antiferromagnetic Heisenberg model from super-exchange in the Mott regime

$$
H = -J\sum_{\langle i,j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}
$$
with $J \approx -4t^{2}/U$

Heisenberg model of magnetism **(effective spin model)** Tentative model for strongly correlated materials, and emergent phenomena such as high-Tc superconductivity

The strontium project at LPL

Fermionic Strontium 87 in optical lattices: **Quantum magnetism beyond spin 1/2 (electron) particles**

Spin 9/2; SU(10) symmetry

Exploring magnetism with tunable spin degree of freedom

2 spin states: analogy to spin 1/2 electrons 3 spin states: analogy to quarks with three colours Up to 10 spin states: no equivalent

2 states: Neel order

> 5 states : underconstrained magnetism (frustration)

Hermele 2009, PRL **103**, 135301

Narrow atomic transitions: new control / probe tools

Involving a metrology expertise (clock community)

The strontium project at LPL

Two valence electrons

 \rightarrow singlet and triplet electronic spin states

1) Shelving spectroscopy of the strontium intercombination line demonstrated on an atomic beam and a hot cell setups \rightarrow applicable to most Sr experiments

ArXiv:1910.11718

2) Birth of the Strontium experiment

- a degenerate Fermi gas with 10 spin-states
- first experiments of coherent spin manipulation

Spin-dependent adiabatic momentum transfer

Shelving spectroscopy of the intercombination line

Shelving spectroscopy of the intercombination line

Two independent setups

1) Directed thermal beam

Well defined atomic beam direction Separated interrogation and readout: compatible with Ramsey schemes

2) Hot vapour cell

Completely independent setup: lasers, detection electronics...

Isotropic velocity distribution Locally overlapped interrogation and readout

Doppler spectrum overview

9

SubDoppler line – atomic beam

SubDoppler line – atomic beam

Lorentzian FWHM : 110 kHz

Contributions:

 $= 83$ Isat $\rightarrow \Omega = 50$ kHz power broadening $FWHM \sim 70$ kHz Modulation amplitude (p-p) 66 kHz Transit broadening, FWHM : \sim 50 kHz

Frequency instability:

 Lowest when power-broadening dominates over transit broadening

 High intensities: baseline drifts and lineshape distortion

Optimal at 100 Isat; Fit precision statistically consistent with the short-term instability and the sampling

Performances – atomic beam

Lock-in amplifier integration time 1s

Frequency instability at 1s (1-shot) : 1,2 kHz **Relative freq instability at 1s: 2 10^-12**

Fit uncertainty 450 Hz (statistically consistent with the sampling)

Performances – atomic beam

Technically limited performances; what could be the fundamental limit?

SNR (thus also instability) a factor 10 behind **atomic shot noise limitation : 2 10^-13 at 1s**

Spectrum at only 7% readout absorption Very strong improvement achievable by reaching to **high densities : 3 10^-14 at 1s**

> **Very similar to Ca-beam clocks, e.g. McFerran 2009: 7 10^-14 at 1s**

Lock-in amplifier integration time 1s

Frequency instability at 1s (1-shot) : 1,2 kHz **Relative freq instability at 1s: 2 10^-12**

Fit uncertainty 450 Hz (statistically consistent with the sampling)

Applicability to a hot cell

Lineshape robustness:

Typical transit time 8 μ s << $1/\gamma$ = 21 μ s: **coherent evolution.**

The shape still remains close to Lorentzian, due to **velocity averaging**

→ strong stability of the lineshape with I

Applicability to a hot cell

Lineshape robustness:

Typical transit time 8 μ s << $1/\gamma$ = 21 μ s: **coherent evolution.**

The shape still remains close to Lorentzian, due to **velocity averaging**

→ strong stability of the lineshape with I

Compactness and **source lifetime**:

- No signal degradation nor shift vs pressure up to 10^-3 mbar of Argon: **no need for pump**
- Absorption 80% despite 100K lower temperature

Applicability to a hot cell

Lineshape robustness:

Typical transit time 8 μ s << $1/\gamma$ = 21 μ s: **coherent evolution.**

The shape still remains close to Lorentzian, due to **velocity averaging**

→ strong stability of the lineshape with I

Compactness and **source lifetime**:

- No signal degradation nor shift vs pressure up to 10^-3 mbar of Argon: **no need for pump**
- Absorption 80% despite 100K lower temperature

Robust against first order Doppler shift

Concluding remarks

A robust solution, demonstrated on two fully independent setups: Atomic beam with separated interrogation zone,

ArXiv:1910.11718

and **Hot cell with overlapping beams**

Shelving detection easily applicable to all strontium experiments

Concluding remarks

A robust solution, demonstrated on two fully independent setups: Atomic beam with separated interrogation zone,

ArXiv:1910.11718

and **Hot cell with overlapping beams**

Shelving detection easily applicable to all strontium experiments

A reference of metrological interest?

- short-term instability: achieved 2 10^-12 at 1s (beam setup) achievable 3 10^-14 at 1s with same setup

> \rightarrow perspectives similar to Ca-beam clocks, as low-cost clock [Kürzig group project: a transportable Sr Ramsey clock]

Many ideas of Ca-beam clocks should be identically applicable (Mc Ferran2009, Shang 2017)

1) Shelving spectroscopy of the strontium intercombination line demonstrated on an atomic beam and a hot cell setups \rightarrow applicable to most Sr experiments

ArXiv:1910.11718

2) Birth of the Strontium experiment

- a degenerate Fermi gas with 10 spin-states
- first experiments of coherent spin manipulation

Spin-dependent adiabatic momentum transfer

15 **Cold and dense: in principle ideal for loading an optical trap**

Loading stage sensitive to frequency drifts by O(10 kHz): stable referencing essential

Evaporation

Gaussian residuals 0.010 0.005 0.000 -0.005 -0.010

Loading stage sensitive to frequency drifts by O(10 kHz): stable referencing essential

> **Since spring 2019 : Fermi gas with 10 spin states, down to T/Tf ~ 0,2**

- Stern-Gerlach separation,
	- + broad line imaging ?

 $grad(B)$ $m_{F} = -2$ $m_{\overline{F}}$ $m_F = -1$ $m_{\scriptscriptstyle \sf F}=0$ $m_{\scriptscriptstyle\rm F}=1$ $m_{\overline{F}} = 2$ Alkali atoms

Impossible because of very small (purely nuclear) magnetic dipole moment.

How to spatially separate the spin states, before imaging on the broad line?

Established technique in this spirit: Optical Stern-Gerlach separation

large gradients of spin-dependent light shifts applied for \sim 1ms

Requires specific lasers and beamshapes

We present an alternative scheme that simply relies on the narrow-line MOT beams

Yb: Taie 2010, Phys. Rev. Lett. 105, 190401

reminiscent of STIRAP

Full population measurements

Two spin state populations measured in one run

Average diffraction efficiency ~70% Mostly limited by laser intensity (4 mW/cm²) / small Clebsh Gordan coefficients

Thank you for your attention

Birth of the strontium 87 experiment at LPL

Spin 9/2 Fermi gases at $T/Tf \sim 0.2$

Adiabatic spin-dependent momentum transfer

A free-space version of our ambitions inside the optical lattice: coherent, position-dependent manipulations of the spin degree of freedom (S.O.C)

I. Manai, P. Bataille, A. Litvinov, J. Huckans, F. Wiotte, A. Kaladjian, O. Gorceix, E. Maréchal, M. Robert-de-Saint-Vincent, B. Laburthe-Tolra

Shelving spectroscopy of the Sr intercombination line

ArXiv:1910.11718

Simple scheme applicable to most Sr spectroscopy setups (cell and beam), for a large signal enhancement

Demonstrated relative instability 2 10^-12 at 1s; expected limitations to a few 10^-14 at 1s, Offers perspectives for low-complexity frequency references

Manai, Duval, Bataille, Wiotte, Laburthe-Tolra, Maréchal, Robert-de-Saint-Vincent *Laboratoire de Physique des Lasers*

A. Molineri, C. Briosne-Fréjaville, R. Journet, F. Nogrette, M. Cheneau *Laboratoire Charles Fabry*

ANR, FIRST-TF, DIM Nano'K, DIM Sirteq (IFRAF)

Narrow-line cooling of 88 Sr

Illustrations of specificities in narrow-line MOTs

Laser cooling on a resonant shell

 \rightarrow capture stage requires artificial line broadening

Tool: strong MOT compression by a frequency ramp

July 2018: 88 Sr in a dipole trap

Narrow-line cooling of 87 Sr

Mukayami et al, PRL 90, 113002 (2003): complications from the hyperfine structure

 ${}^{88}Sr$ (May 2018)

Temperature

$$
\text{Doppler limit}: \quad k_B T \sim \frac{\hbar \Gamma}{2} \sim k_B \times 350 \, nK
$$

Recoil limit: $k_B T \sim$ h^2 2*m* λ $\frac{1}{2}$ ∼ k_B ×460*nK*

Density / Phase space density

Reduced radiation trapping $n_0 = \frac{\kappa}{\Gamma s_0 \sigma \hbar k_L} = \frac{4}{3\pi} \frac{|\delta|}{\Gamma} \frac{\gamma_J b'}{\Gamma} k_L^2.$

Katori et al (1999) : free space MOT, 10^{12} / cm³ 10^{-2} phase space density

In principle ideal for loading a 3D optical trap Ido et al (2000), Stellmer et al (2013) :

Laser cooling in dipole traps to PSD's of up to 1