Quantum magnetism with a dipolar BEC

Dipolar Quantum gases

Quantum magnetism with a dipolar BEC

different spin dynamics induced by dipole-dipole interactions

Spin changing collisions

$$
\Delta m_S = (m_{s1} + m_{s2})_f - (m_{s1} + m_{s2})_i \neq 0
$$

$$
E_c^f = E_c^i + \Delta E_{magnetic} \qquad \Delta E_{magnetic} = g\mu_B \Delta m_S
$$

+3 +2 +1 transfer to the others m_s and band excitations dipole-dipole interactions induce a spin-orbit coupling $\Delta m_s + \Delta m_l = 0$ rotation induced dipolar relaxation

S=3 spinor gas: the non interacting picture

T_c is lowered

 $g_\nu\mu_\nu B \gg k_BT$ $N_{th} = N_{tot} - N_c = \sum (\exp[\beta \hbar(\omega_x n_x + \omega_y n_y + \omega_z n_z)] - 1)^{-1}$ n_x, n_y, n_z

$$
\beta = 1 / k_B T \qquad k_B T_{c0} = 0.94 \hbar \overline{\omega} N_{at}^{1/3}
$$

average trap frequency **3**

apply even if S>0 if no dipole-dipole interactions

Single component Bose thermodynamics is a single component Bose thermodynamics $\mu_i = \mu + g_J \mu_B m_{Si} B$ $\int_0^1 (2S+1)^{1/3}$ $\int_0^1 c^0$ 1 \sum_{c} $\frac{1}{B\rightarrow 0} \frac{1}{(2S+1)^{1/3}} T_c$ *T* + \rightarrow \rightarrow $(\beta \mu_i) = \sum (\exp[\beta \hbar(\omega_x n_x + \omega_y n_y + \omega_z n_z) + \beta \mu_i]-1)$ n_x, n_y, n_z $N_{th}(\beta \mu_i) = \sum (\exp[\beta \hbar(\omega_x n_x + \omega_y n_y + \omega_z n_z) + \beta \mu_i)]$ $, n_{v}$, $\beta \mu_i$ = $\sum (\exp[\beta \hbar(\omega_x n_x + \omega_y n_y + \omega_z n_z) + \beta \mu_i]-1)^{-1}$ $g_{L}\mu_{B}B \approx k_{B}T$ **-2 -1 0 1 2 3 -3 -3 -2 -1 0 2 1**

> at low B field excited states are thermally populated thanks to dipole-dipole interactions

Our results: magnetization versus *T*

S=3 Spinor physics below B_c: emergence of new quantum phases

The repulsive contact interactions are set by a_6 and a_4

As $a_6 > a_4$, it costs no energy at B_c to go from $m_s = -3$ to $m_s = -2$: the stabilization in interaction energy compensates for the Zeeman energy excitation 0 6 u_4 $0.7 \frac{2 \pi \; \hbar^2 (a_6 - a_4)}{n}$ *m* $a₆ - a$ $g_{J}\mu_{B}B_{c} = 0.7 \frac{2\pi \hbar^{2}(a_{6} - b)}{m}$

S=3 Spinor physics below B_c: spontaneous demagnetization of the BEC

Experimental procedure:

Rapidly lower magnetic field below *Bc* measure spin populations with **Stern Gerlach** experiment

S=3 Spinor physics below B_c **: local density effect**

$$
g_J \mu_B B_c \approx \frac{2\pi \hbar^2 n_0 \left(a_6 - a_4\right)}{m}
$$

Pasquiou et al., PRL 106, 255303 (2011)

Bc **depends on density**

2D Optical lattices increase the peak density by about 5

S=3 Spinor physics below B_c **: thermodynamics change**

Spin changing collisions

$$
\Delta m_S = (m_{s1} + m_{s2})_f - (m_{s1} + m_{s2})_i \neq 0
$$

$$
E_c^f = E_c^i + \Delta E_{magnetic} \qquad \Delta E_{magnetic} = g\mu_B \Delta m_S
$$

the Cr BEC can depolarize at low B fields

Dipolar Relaxation in a 3D lattice

dipolar relaxation is possible if: $\Delta E_c^{(i)} = \hbar \left(n_x \omega_x + n_y \omega_y + n_z \omega_z \right)$

(and selection rules)

Dipolar relaxation in a 3D lattice - observation of resonances

study of the lowest resonance

Dipolar relaxation in a 3D lattice – study of the first resonance

Dipolar relaxation in a 3D lattice – effect of onsite contact interactions

Dipolar relaxation in a 3D lattice – effect of onsite contact interactions

good agreement between theory for two atoms per site and experiment both for the shape and position of the resonance

test of the Mott distribution

atomic distribution expected for an adiabatic loading of the 3D lattice (25 *Er)*

Production of intricated states with a fast lattice loading

Spin exchange dynamics in a 3D lattice

spin exchange from -2

experimental sequence:

Different Spin exchange dynamics in a 3D lattice

dipolar relaxation with

 $\Delta E_c \gg U$ _{*lattice*}

Contact interaction (intrasite) Dipole-dipole interaction (intersite)

 $= \ddot{S}_{1z}^{\prime} \ddot{S}_{2z}^{\prime} - \frac{1}{4} \Big(\ddot{S}_{1+}^{\prime} \ddot{S}_{2-}^{\prime} + \ddot{S}_{1-}^{\prime} \ddot{S}_{2+}^{\prime} \Big)$ 4 $\ddot{H}_{11} = \ddot{S}_1 \ddot{S}_2 - \frac{1}{2}$ $\ddot{H}_{dd} = \ddot{S}_{1z}\ddot{S}_{2z} - \frac{1}{4}(\ddot{S}_{1+}\ddot{S}_{2-} + \ddot{S}_{1-}\ddot{S}_{3}$ without spin changing term

expected Mott distribution doublons removed = only singlons

Spin exchange dynamics in a 3D lattice: with only singlons

the spin populations change!

relative populations

comparison with a plaquette model (Pedri, Santos) 3*3 sites containing one atom – work in progress Proof of intersite dipolar coupling quadratic light shift and tunneling taken into account

Spin exchange dynamics in a 3D lattice with doublons at short time scale

initial spin state

$$
|-2;-2\rangle = \sqrt{\frac{6}{11}}|6,-4\rangle - \sqrt{\frac{5}{11}}|4,-4\rangle
$$

onsite contact interaction:

contact spin exchange in 3D lattice: Bloch PRL 2005, Sengstock Nature Physics 2012 spin oscillations with the expected period strong damping (rate > 1O J)

Spin exchange dynamics in a 3D lattice with doublons at "long" time scale

Spin exchange dynamics in a 3D lattice: strong reduction by a magnetic gradient

Different Spin exchange dynamics in a 3D lattice

intersite dipolar

thank you for your attention!