Quantum magnetism with a dipolar BEC
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Dipolar Quantum gases
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Quantum magnetism with a dipolar BEC

different spin dynamics induced by dipole-dipole interactions

change of Zeeman states populations in a S=3 BEC

magnetization = Z PmS Mg

Mg

|- demagnetization of the BEC —
at low B field
— change of the magnetization

lI- dipolar relaxation in a 3D lattice

llI- spin exchange in a 3D lattice constant magnetization



Spin changing collisions

Amg = (msl + msZ)f - (msl + msZ)i #0

ch = Eci +AEmagnetic AEmagnetic - g/uBAmS
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spin changing collisions become possible at low B field

the Cr BEC can
depolarize at low B fields

At low B field the Cr BEC is a S=3 spinor BEC

from the highest energy Zeeman state
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after an RF transfer to ms=+3 study of the
transfer to the others mq

dipole-dipole interactions

rotation induced ) . . .
induce a spin-orbit coupling

Am, +Am, =0

Cr BEC in a 3D optical lattice : coupling between magnetic
and band excitations




S=3 spinor gas: the non interacting picture

T.is lowered

Single component Bose thermodynamics Multi-component Bose thermodynamics
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average trap frequency

apply even if S>0
if no dipole-dipole interactions

at low B field excited states are thermally populated
thanks to dipole-dipole interactions



Our results: magnetization versus T

The BEC is ferromagnetic:
only atoms in m¢=-3 condense

(i.e. in the absolute ground state of the system)
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Solid line: results of theory
without interactions and
free magnetization
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The good agreement shows that
the system behaves as if

there were no interactions
(expected for S=1)

Isoshima et al., J. Phys. Soc. Jpn, 69, 12, 3864 (2000)



S=3 Spinor physics below B_: emergence of new quantum phases

Above B,

the BEC is

ferromagnetic
i.e. polarized in the

lowest energy single
particle state

All the atoms in m¢=-3
interactions only in the
molecular potential S, ,= 6
because m,, .= -6

The repulsive contact
interactions set by a,

Below B,

the BEC is non

ferromagnetic
i.e.itisa
multicomponent BEC

If atoms are transferred in my=-2
then they can interact also in the molecular
potential S, .= 4 because m_,,, = -4

stot —

The repulsive contact interactions are
setbyagand g,

As a;>a,, it costs no energy at B, to go from m¢=-3 to m¢=-2 : the stabilization
in interaction energy compensates for the Zeeman energy excitation
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S=3 Spinor physics below B_: spontaneous demagnetization of the BEC

Experimental procedure: Rapidly lower magnetic field below B,
measure spin populations with Stern Gerlach experiment

B>>B,

BEC in m¢=-3

B,< B,

Magnetic field control

dynamic lock, fluxgate sensors

reduction of 50 Hz noise fluctuations
feedback on earth magnetic field, "elevators"

Performances: 0.1 mG stability
without magnetic shield,
up to 1 Hour stability

1mG (a)
0.5mG (b)
0.25mG (c)

« 0 mG » (d)

BEC in
all Zeeman
components !
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S=3 Spinor physics below B_: local density effect

A y L A A
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3D BEC 1D
Quantum gas

® BEC B.expected | 0.26 mG | 1.25mG
A BEC in lattice

1/e fitted 0.3 mG 1.45 mG

' ' ' . Pasquiou et al., PRL 106, 255303 (2011)
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B.depends on density

2D Optical lattices increase the peak
density by about 5



S=3 Spinor physics below B,: thermodynamics change
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for B < B_, magnetization remains constant
after the demagnetization process
independent of T

This reveals the non-ferromagnetic
nature of the BEC below B,
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hint for double
phase transition
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forT,<T<T,
BEC only in ms=-3

Pasquiou et al., PRL (2012)

0.5



Spin changing collisions

from the ground state
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spin changing collisions become possible at low B field

the Cr BEC can
depolarize at low B fields

At low B field the Cr BEC is a S=3 spinor BEC

V/’ -V ArnS = (msl + msZ)f o (m51 + mSZ)i #0

ch = Eci +AEmagnetic AEmagnetic - g/uBAmS

from the highest energy Zeeman state
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after an RF transfer to ms=+3 study of the
transfer to the others mq

dipole-dipole interactions

rotation induced ) . . .
induce a spin-orbit coupling

Am, +Am, =0

Cr BEC in a 3D optical lattice : coupling between magnetic
and band excitations




Dipolar Relaxation in a 3D lattice

kinetic energy gain
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we observe that spin
dipolar relaxation is possible if:
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atomes dans m=3

Dipolar relaxation in a 3D lattice - observation of resonances
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tunnel effect minimal in an excited states along Oy

—  study of the lowest resonance



atomes dans m=3

Dipolar relaxation in a 3D lattice — study of the first resonance
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Dipolar relaxation in a 3D lattice — effect of onsite contact interactions
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Final spin states
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Initial spin state
good agreement between theory for 3-3> — ‘ 6 6>
two atoms per site and experiment ’ ’

both for the shape and position of the resonance

our limit: lattice fluctuations
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Dipolar relaxation in a 3D lattice — effect of onsite contact interactions
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atomic distribution expected
for an adiabatic loading of the
3D lattice (25 E,)

good agreement between theory for
two atoms per site and experiment
both for the shape and position of the resonance

test of the Mott distribution
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Production of intricated states with a fast lattice loading

for a diabatic loading,
sites with 3 atoms
(or more) are expected

A. de Paz et al., (ArXivdecember 2012)

B (kHz)

Theory for 3 atoms per site:

4 resonances expected

(4 different energies in the final state)
good agreement between experiment — _
and theory for three atoms per site "few-body"* physics

production of intricated 3 body states
@ 3,3,3)® [0,0,0)> > [2,2,3)®(2,0,0)

probe of the atomic

distribution in the lattice spin orbit



Spin exchange dynamics in a 3D lattice

10 mG

0 |
dipolar relaxation suppressed first resonance
evolution at constant magnetization

spin exchange from -2
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Preparation in an atomic excited state

creation of a quadratic light shift energy
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Close to a J—J transition
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Different Spin exchange dynamics in a 3D lattice

Contact interaction (intrasite) Dipole-dipole interaction (intersite)
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Spin exchange dynamics in a 3D lattice: with only singlons
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comparison with a plaquette model (Pedri, Santos)
3*3 sites containing one atom — work in progress
Proof of intersite dipolar coupling quadratic light shift and tunneling taken into account



Spin exchange dynamics in a 3D lattice with doublons at short time scale

initial spin state
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contact spin exchange in 3D lattice:
Bloch PRL 2005, Sengstock Nature Physics 2012
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spin oscillations with the expected period
strong damping (rate > 10 J)



Spin exchange dynamics in a 3D lattice with doublons at "long" time scale

Populations

intersite dipolar
coupling

result of our
toy model:

Populations

two sites with two atoms

coordination factor (10)
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our experiment allows

the study of molecular

Cr magnets with larger
magnetic moments than Cr
atoms, without the use
of a Feshbach resonance




Spin exchange dynamics in a 3D lattice: strong reduction by a magnetic gradient
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Different Spin exchange dynamics in a 3D lattice
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expected Mott distribution
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doublons removed = only singlons

intrasite contact
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Heisenberg like hamiltonian

1
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guantum magnetism with
S=3 bosons and true
dipole-dipole interactions




thank you for your attention!




