Quantum magnetism with a dipolar BEC

Dipolar Quantum gases

Quantum magnetism with a dipolar BEC

different spin dynamics induced by dipole-dipole interactions

Spin changing collisions

$$\Delta m_{S} = (m_{s1} + m_{s2})_{f} - (m_{s1} + m_{s2})_{i} \neq 0$$
$$E_{c}^{f} = E_{c}^{i} + \Delta E_{magnetic} \qquad \Delta E_{magnetic} = g\mu_{B}\Delta m_{S}$$

from the highest energy Zeeman state

Cr BEC in a 3D optical lattice : coupling between magnetic and band excitations

S=3 spinor gas: the non interacting picture

T_c is lowered

Single component Bose thermodynamics

 $g_J \mu_B B \gg k_B T$ $N_{th} = N_{tot} - N_c = \sum_{n_x, n_y, n_z} (\exp[\beta \hbar (\omega_x n_x + \omega_y n_y + \omega_z n_z)] - 1)^{-1}$

$$\beta = 1 / k_B T \qquad k_B T_{c0} = 0.94 \ \hbar \overline{\omega} N_{at}^{1/3}$$

average trap frequency

apply even if S>0 if no dipole-dipole interactions

Multi-component Bose thermodynamics $g_{I}\mu_{B}B \approx k_{B}T$ $N_{th}(\beta \mu_i) = \sum_{n_x, n_y, n_z} (\exp[\beta \hbar (\omega_x n_x + \omega_y n_y + \omega_z n_z) + \beta \mu_i] - 1)^{-1}$ $\mu_i = \mu + g_J \mu_B m_{Si} B$ $T_c \xrightarrow{B \to 0} \frac{1}{(2S+1)^{1/3}} T_{c0}$

at low B field excited states are thermally populated thanks to dipole-dipole interactions

Our results: magnetization versus T

S=3 Spinor physics below *B_c*: emergence of new quantum phases

interactions set by a_6

then they can interact also in the molecular potential S_{tot} = 4 because $m_{s tot}$ = -4

The repulsive contact interactions are set by a_6 and a_4

As $a_6 > a_4$, it costs no energy at B_c to go from m_s =-3 to m_s =-2 : the stabilization in interaction energy compensates for the Zeeman energy excitation $g_J \mu_B B_c = 0.7 \frac{2\pi \hbar^2 (a_6 - a_4)}{m_B} n_0$

S=3 Spinor physics below *B_c*: spontaneous demagnetization of the BEC

Experimental procedure:

Rapidly lower magnetic field below B_c measure spin populations with **Stern Gerlach** experiment

S=3 Spinor physics below *B_c*: local density effect

	3D BEC	1D Quantum gas
B _c expected	0.26 mG	1.25 mG
1/e fitted	0.3 mG	1.45 mG

Pasquiou et al., PRL 106, 255303 (2011)

B_c depends on density

2D Optical lattices increase the peak density by about 5

S=3 Spinor physics below B_c: thermodynamics change

Spin changing collisions

$$\Delta m_{S} = (m_{s1} + m_{s2})_{f} - (m_{s1} + m_{s2})_{i} \neq 0$$
$$E_{c}^{f} = E_{c}^{i} + \Delta E_{magnetic} \qquad \Delta E_{magnetic} = g\mu_{B}\Delta m_{S}$$

from the ground state

spin changing collisions become possible at low B field

the Cr BEC can depolarize at low B fields

At low B field the Cr BEC is a S=3 spinor BEC

Dipolar Relaxation in a 3D lattice

we observe that spin populations change when :

dipolar relaxation is possible if:

$$\Delta E_c^{(i)} = \hbar \left(n_x \omega_x + n_y \omega_y + n_z \omega_z \right)$$

(and selection rules)

Dipolar relaxation in a 3D lattice - observation of resonances

tunnel effect minimal in an excited states along Oy

study of the lowest resonance

Dipolar relaxation in a 3D lattice – study of the first resonance

Dipolar relaxation in a 3D lattice – effect of onsite contact interactions

Dipolar relaxation in a 3D lattice – effect of onsite contact interactions

good agreement between theory for two atoms per site and experiment both for the shape and position of the resonance

test of the Mott distribution

atomic distribution expected for an adiabatic loading of the 3D lattice (25 E_r)

Production of intricated states with a fast lattice loading

Spin exchange dynamics in a 3D lattice

spin exchange from -2

Different Spin exchange dynamics in a 3D lattice

Contact interaction (intrasite)

Dipole-dipole interaction (intersite)

 $\ddot{H}_{dd} = \ddot{S}_{1z} \ddot{S}_{2z} - \frac{1}{4} \left(\ddot{S}_{1+} \ddot{S}_{2-} + \ddot{S}_{1-} \ddot{S}_{2+} \right)$ without spin changing term

| \bigcirc |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| \bigcirc |
\bigcirc	\bigcirc	\bigcirc					\bigcirc		\bigcirc
\bigcirc	\bigcirc		\bigcirc				\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc					\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc					\bigcirc	\bigcirc	\bigcirc
\bigcirc		\bigcirc							
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc
					\bigcirc				

doublons removed = only singlons

 $\Delta E_c >> U_{lattice}$

dipolar relaxation with

expected Mott distribution

Spin exchange dynamics in a 3D lattice: with only singlons

the spin populations change!

relative populations

comparison with a plaquette model (Pedri, Santos) 3*3 sites containing one atom – work in progress quadratic light shift and tunneling taken into account

Spin exchange dynamics in a 3D lattice with doublons at short time scale

initial spin state $|-2;-2\rangle = \sqrt{\frac{6}{11}}|6,-4\rangle - \sqrt{\frac{5}{11}}|4,-4\rangle$ populations onsite contact interaction: $n_0 g_s$ $g_s = 4\pi \frac{\hbar^2}{m} a_s$ $T_{contact} = \frac{h}{n_0(g_6 - g_A)} = 280 \ \mu s$

contact spin exchange in 3D lattice: Bloch PRL 2005, Sengstock Nature Physics 2012 spin oscillations with the expected period strong damping (rate > 10 J)

Spin exchange dynamics in a 3D lattice with doublons at "long" time scale

Spin exchange dynamics in a 3D lattice: strong reduction by a magnetic gradient

Different Spin exchange dynamics in a 3D lattice

intersite dipolar

thank you for your attention!