# Dipolar chromium BECs, and magnetism

LPI

RIPURLICUE FRANÇANE MENSTÊRE RE L'ANSERCIMENT SUPÉRIOUR RE LA RECORRENT

Claim

e sur les Atomes Froi

IFRA

A. de Paz (PhD), A. Sharma, B. Laburthe-Tolra, E. Maréchal, L. Vernac, P. Pedri (Theory), O. Gorceix (Group leader) UNIVERSITÉ PARIS 13

<u>Have left:</u> B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu <u>Collaborators:</u> Anne Crubellier (Laboratoire Aimé Cotton), J. Huckans, M. Gajda

#### **Chromium : an artificially large spin (S=3):**



### **Relative strength of dipole-dipole and Van-der-Waals interactions**

 $\varepsilon_{dd} > 1$  Spherical BEC collapses

$$\varepsilon_{dd} = \frac{\mu_0 \mu_m^2 m}{12\pi\hbar^2 a} \propto \frac{V_{dd}}{V_{VdW}}$$

Stuttgart: Tune contact interactions using Feshbach resonances (Nature. 448, 672 (2007))



Anisotropic explosion pattern reveals dipolar coupling.



Stuttgart: d-wave collapse, PRL **101**, 080401 (2008) See also Er PRL, **108**, 210401 (2012) See also Dy, PRL, **107**, 190401 (2012) and Dy Fermi sea PRL, 108, 215301 (2012) ... and heteronuclear molecules...

 $\mathcal{E}_{dd} < 1$ BEC stable despite attractive part of dipole-dipole interactions

 $\varepsilon_{dd} = 0.16$ 

- Small (but interesting) effects observed at the % level :
- Striction Stuttgart, PRL 95, 150406 (2005)
- Collective excitations Villetaneuse, PRL 105, 040404 (2010)
- Anisotropic speed of sound, Villetaneuse, PRL 109, 155302 (2012)

### Polarized (« scalar ») BEC **Hydrodynamics** Collective excitations, sound, superfluidity

Multicomponent (« spinor ») BEC Magnetism Phases, spin textures...

**Chromium (S=3): involve dipole-dipole interactions** 

$$V_{dd} = \frac{\mu_0}{4\pi} S^2 (g_J \mu_B)^2 (1 - 3\cos^2(\theta)) \frac{1}{R^3}$$

Long-ranged

Anisotropic

Hydrodynamics: non-local mean-field Magnetism: Atoms *are* magnets

θ

R

Interactions couple **spin** and **orbital** degrees of freedom

#### Key idea:

Study magnetism with large spins (S=3, S=6...)

#### This talk:

### **0** Introduction to spinor physics

### **1** Spinor physics of a Bose gas with free magnetization

2 (Quantum) magnetism in opical lattices







Stamper-Kurn, Lett, Gerbier

#### **Main ingredients for spinor physics**

S=1,2,...

Spin-dependent contact interactions Spin exchange

$$\left| m_{S} = 0, m_{S} = 0 \right\rangle = \sqrt{\frac{2}{3}} \left| S = 2, m_{tot} = 0 \right\rangle - \sqrt{\frac{1}{3}} \left| S = 0, m_{tot} = 0 \right\rangle$$

### Main new features with Cr

#### **S**=3

7 Zeeman states4 scattering lengthsNew structures

Strong spin-dependent contact interactions

Purely linear Zeeman effect

#### And

Quadratic Zeeman effect

 $\hbar\Gamma \propto \left(\frac{4\pi\hbar^2(a_2 - a_0)}{m}\right) \quad \mathbf{0} \quad \mathbf$ 

**Dipole-dipole interactions** 

# Dipolar interactions introduce magnetization-changing collisions



# Dipolar relaxation, rotation, and magnetic field







B=10 mG → Energy gain matches band excitation in a lattice

B=.1 mG  $\rightarrow$  Energy gain equals to chemical potential in BEC

### **S=3 Spinor physics with free magnetization**

**1** Spinor physics of a Bose gas with free magnetization (bulk)

2 (Quantum) magnetism in optical lattices

**Technical challenges :** 

Good control of magnetic field needed (down to 100 µG) Active feedback with fluxgate sensors

Low atom number – 10 000 atoms in 7 Zeeman states

### Spin temperature equilibriates with mechanical degrees of freedom

At low magnetic field: spin thermally activated

 $g\mu_B B \approx k_B T$ 

3

2

1

-2



We measure spin-temperature by fitting the m<sub>s</sub> population (separated by Stern-Gerlach technique)

Related to Demagnetization Cooling expts, Pfau, *Nature Physics* **2**, 765 (2006)



Time of flight Temperature (µK)

#### Spontaneous magnetization due to BEC



PRL 108, 045307 (2012)

#### Below a critical magnetic field: the BEC ceases to be ferromagnetic !



-Magnetization remains small even when the condensate fraction approaches 1 !! Observation of a depolarized condensate !!

**Necessarily an interaction effect** PRL **108**, 045307 (2012)



PRL 106, 255303 (2011)

below which we see demagnetization and Bc

### **Open questions about equilibrium state**



Santos and Pfau PRL **96**, 190404 (2006) Diener and Ho PRL. **96**, 190405 (2006) Demler et al., PRL **97**, 180412 (2006)

Phases set by contact interactions, magnetization dynamics set by dipole-dipole interactions



#### **!! Depolarized BEC likely in metastable state !!**

Operate near B=0. Investigate absolute many-body ground-state
We do not (cannot ?) reach those new ground state phases
Quench should induce vortices...
-Role of thermal excitations ?

# **Magnetic phase diagram**



**0 Introduction to spinor physics** 

### **1 Spinor physics of a Bose gas with free magnetization**

### 2 (Quantum) magnetism in opical lattices



#### Study quantum magnetism with dipolar gases ?

Hubard model at half filling, Heisenberg model of magnetism (effective spin model)

$$S_{1z}S_{2z} + \frac{1}{2}(S_{1+}S_{2-} + S_{1-}S_{2+})$$

**Dipole-dipole interactions between real spins** 

$$V_{dd} = \frac{\mu_0}{4\pi} (g_J \mu_B)^2 \frac{S_1 \cdot S_2 - 3(S_1 \cdot \vec{u}_R)(S_2 \cdot \vec{u}_R)}{R^3}$$

$$S_{1z}S_{2z} + \frac{1}{2}(S_{1+}S_{2-} + S_{1-}S_{2+}) - \frac{3}{4}(2zS_{1z} + r_{-}S_{1+} + r_{+}S_{1-}). (2zS_{2z} + r_{-}S_{2+} + r_{+}S_{2-})$$

Magnetization changing collisions  $S_1^-S_2^-$ 

#### Magnetization dynamics resonance for a Mott state with two atoms per site (~15 mG)





Dipolar resonance when released energy matches band excitation

Mott state locally coupled to excited band

### Direct manifestation of anisotropic interactions : Strong anisotropy of dipolar resonances



See also PRL 106, 015301 (2011)

From now on : stay away from dipolar magnetization dynamics resonances, Spin dynamics at constant magnetization (<15mG)



$$S_{1z}S_{2z} - \frac{1}{4}(S_{1+}S_{2-} + S_{1-}S_{2+})$$

**Differs from Heisenberg magnetism:** 

$$S_{1z}S_{2z} + \frac{1}{2}(S_{1+}S_{2-} + S_{1-}S_{2+})$$

Related research with polar molecules:

A. Micheli et al., Nature Phys. 2, 341 (2006).
A.V. Gorshkov et al., PRL, 107, 115301 (2011),
See also D. Peter et al., PRL. 109, 025303 (2012)

#### Other differences from Heisenberg magnetism:

Bosons... Not a spin  $\frac{1}{2}$  system: S=3... Anisotropy...-1/r<sup>3</sup> dependence... Does not rely on Mott physics... Can have more than one atom per site

$$\alpha S_{1z} S_{2z} + \beta \frac{1}{2} (S_{1+} S_{2-} + S_{1-} S_{2+})$$

#### Control the initial state by a tensor light-shift

Quadratic effect allows state preparation



A σ− polarized laser Close to a J→J transition (100 mW 427.8 nm)

 $\Delta = \alpha m_s^2$ 



### Adiabatic state preparation in 3D lattice



### Initiate spin dynamics by removing quadratic effect



#### Short times : fast oscillations due to spin-dependent contact interactions



PRELIMINARY

### (sudden melting of Mott insulator ?)





#### Long time-scale spin dynamics in lattice : intersite dipolar exchange



**Magnetization is constant** 

 $\frac{1}{2} \left( S_{1+} S_{2-} + S_{1-} S_{2+} \right)$ 

PRELIMINARY

### Oscillations arise from interactions between doubledoccupied sites



PRELIMINARY

Very slow spin dynamics for one particle per site: Intersite dipole-dipole coupling

#### **Our current understanding:**

 $-\frac{1}{4} \left( S_{1+} S_{2-} + S_{1-} S_{2+} \right)$  $S_{1z}S_{2z}$ 

(Very) long time-scale dynamics due to inter-site dipolar exchange between singlons



1/e timescale = 25 ms

0.0

0

2

Λ

Time (ms)

8

6

Theoretical estimate : 2 atoms, 2 sites : exchange timescale = 50 ms



Exact diagonalization 2 pairs, 2 sites Faster coupling because larger effective spin

# Conclusions





New spinor phases at extremely low magnetic fields



Magnetization dynamics is resonant



Intersite dipolar spin-exchange







## **Magnetism in lattice**

## **Resonant magnetization dynamics**

Towards Einstein-de-Haas effect Anisotropy Few body vs many-body physics



#### **Spontaneous depolarization at low magnetic field** Towards low-field phase diagram



Away from resonances: spin oscillations Spin-exchange Dipolar exchange







**Few-body physics !** The 3-atom state which is reached has **entangled** spin and orbital degrees of freedom



Adiabatic (reversible) change in magnetic state (unrelated to dipolar interactions)


A tool to study spin dynamics in the lattice : a light-induced effective Quadratic Zeeman effect



#### A transition at much higher magnetic field...



#### From the molecular physics point of view



(almost) complete suppression of dipolar relaxation in 1D at low field: a threshold consequence of angular momentum conservation



### 0D: a resonance due to energy conservation



Collab. Group of Mariusz Gajda

#### From the molecular physics point of view



Larger and larger magnetic fields probes smaller and smaller interatomic distances

$$B = 3 G \iff R_c = R_{vdW}$$
  
2-body physics

 $B = .3 \text{ mG} \iff R_c = n^{-1/3}$ 

many-body physics



$$\hbar\Gamma \approx \left|V_{dd}\right|^2 \rho(\varepsilon_f)$$

One expects a reduction of dipolar relaxation, as a result of the reduction of the density of states in the lattice



(almost) complete suppression of dipolar relaxation in 1D at low field: a threshold consequence of angular momentum conservation





#### **Dipolar relaxation: measuring non-local correlations**





PRA 81, 042716 (2010), see also PRL 73, 3247 (1994)

#### (almost) complete suppression of dipolar relaxation in 1D at low field



B. Pasquiou et al., Phys. Rev. Lett. **106**, 015301 (2011)

(almost) complete suppression of dipolar relaxation in 1D at low field in 2D lattices: a consequence of angular momentum conservation



How to make a Chromium BEC



## BEC with Cr atoms in an optical trap



PRA 73, 053406 (2006)

PRA 77, 053413 (2008)

PRA 77, 061601(R) (2008)

## **Threshold for dipolar relaxation in 1D:**



(almost) complete suppression of dipolar relaxation in 1D at low field in 2D lattices

B. Pasquiou et al., Phys. Rev. Lett. 106, 015301 (2011)

### New estimates of Cr scattering lengths

Collaboration Anne Crubellier



 $a_6 = 102.5 \pm 0.4 a_0$  Feshbach resonance in d-wave PRA **79**, 032706 (2009)

## New estimates of Cr scattering lengths



Collaboration Anne Crubellier (LAC)

#### **Prospect : new cooling method using the spin degrees of freedom**



#### A consequence of anisotropy : trap geometry dependence of the frequency shift



Phys. Rev. Lett. 105, 040404 (2010)

Eberlein, PRL **92**, 250401 (2004)

## **Bragg spectroscopy**

Probe dispersion law

Quasi-particles, phonons

E(k) = ck $k\xi << 1$ 

c is sound velocity

c is also critical velocity

Landau criterium for superfluidity



Phys. Rev. Lett. 99, 070402 (2007)



 $\xi$  healing length Re

Rev. Mod. Phys. **77**, 187 (2005)

Bogoliubov spectrum

 $\varepsilon_k = \sqrt{E_k (E_k + 2n_0 g_c)}$ 

## Bragg spectroscopy of an anisotropic superfluid



 $\hbar k = 2\hbar k_L \sin(\theta/2)$ 

Resonance frequency gives speed of sound

### Anisotropic speed of sound



Width of resonance curve: finite size effects (inhomogeneous broadening)

Speed of sound depends on the relative angle between spins and excitation

## Anisotropic speed of sound

A 20% effect, much larger than the (~2%) modification of the mean-field due to DDI

An effect of the momentum-sensitivity of DDI



$$\tilde{\mathcal{V}}(k) = \frac{4\pi d^2}{3} (3\cos^2\theta_k - 1) \qquad \vec{B} \bigoplus_{k=1}^{n} \theta_k$$

$$\varepsilon_k = \sqrt{E_k (E_k + 2n_0(g_c + g_d(3\cos^2\theta_k - 1)))}$$

Good agreement between theory and experiment:

|               | Theo     | Exp      |
|---------------|----------|----------|
| Parallel      | 3.6 mm/s | 3.4 mm/s |
| Perpendicular | 3 mm/s   | 2.8 mm/s |

(See also prediction of anisotropic superfluidity of 2D dipolar gases : Phys. Rev. Lett. 106, 065301 (2011))





## Quantum gases

Density :  $10^{12}$  à  $10^{15}$  at/cm<sup>3</sup>

 $(\leftrightarrow 10^{22} \text{ at/cm}^3 \text{ for liquid He})$ 

Temperature : 1 nK à 1µK

de Broglie wavelength > 100 nm

Interparticle distance ~ 100 nm

Van-der-Waals (contact) interactions  $V(R) = -\frac{C_6}{R^6} \longrightarrow V(R) = \frac{4\pi\hbar^2}{m} a_S \delta(R)$ Isot

Short range Isotropic

 $a_{s} \sim 5 \text{ nm}$  - can be tuned via Feshbach resonances

#### **Effect of interactions on condensates**

Attractive interactions

## Implosion of BEC for large atom number



Small solitons

Rice...

Repulsive interactions

Stable condensate Phonon spectrum





ENS, JILA...

Spin dependent interactions



Berkeley... Magnetism





In a finite magnetic field: Fermi golden rule (losses)



(x1000 compared to alkalis)



Natural timescale for depolarization:

$$V_{dd}(r=n^{-1/3}) \propto \frac{\mu_0}{4\pi} S^2 (g_J \mu_B)^2 n$$

#### **Detecting spin properties with cold atoms:**







# **Spin-sensitive imaging:** (e.g. Faraday rotation)



See D. Stamper-Kurn, Full 3D reconstruction of spin vector

(we do not (yet) do this)

**Density dependent threshold** 



Load into deep 2D optical lattices to boost density. Field for depolarization depends on density

> Note: Possible new physics in 1D: Polar phase is a singlet-paired phase Shlyapnikov-Tsvelik NJP, 13, 065012 (2011)

#### **Different dipolar systems**



$$\left(S_{1z}.S_{2z} - \frac{1}{4}(S_{1+}S_{2-} + S_{1-}S_{2+})\right)\left(1 - 3z^2\right)$$

**Other differences from Heisenberg magnetism:** 

-Bosons...

-Not a spin <sup>1</sup>/<sub>2</sub> system: S=3

-Anisotropy

--1/r<sup>3</sup> dependence

-Does not rely on Mott physics

- Can have more than one atom per site

$$(S=3)+(S=3)=(S_t=6,4,2,0...)$$

 $\sim$  =  $\bigcirc$  Effective  $S_t$ 



Dipolar chromium atoms in 3D optical lattices –Interactions

- Spin-dependent contact interactions in doubly-occupied sites

- Dipolar relaxation

- Intersite dipolar interactions

\* Between singlons

\* Between doublons

