

S. Lepoutre, L. Gabardos Youssef Aziz Alaoui B. Laburthe-Tolra, O. Gorceix, E. Maréchal, L. Vernac, M. Robert-de-St-Vincent, **K. Kechadi**, P. Pedri

Paris North University Villetaneuse

A. M. Rey, J. Schachenmayer, B. Zhu, B. Blakie, Petra Fersterer, Arghavan Safavi-Naini, T. Roscilde

Quantum thermalization of long-range interacting spins

Quantum Thermalization (Isolated System)

Eigenstate Thermalization Hypothesis Deutsch, Srednicki, Olshanii

…and the Eigenstate Thermalization Hypothesis (discussion from Rigol et al. 2009)

$$
\begin{aligned}\n|\psi(0)\rangle &= \sum_{\alpha} C_{\alpha} |\Psi_{\alpha}\rangle \\
|\psi(t)\rangle &= e^{-i\hat{H}t} |\psi(0)\rangle = \sum_{\alpha} C_{\alpha} e^{-iE_{\alpha}t} |\Psi_{\alpha}\rangle \\
\langle \hat{A}(t)\rangle &\equiv \langle \psi(t) | \hat{A} | \psi(t)\rangle = \sum_{\alpha, \beta} C_{\alpha}^{\star} C_{\beta} e^{i(E_{\alpha} - E_{\beta})t} A_{\alpha\beta} \\
\langle \overline{A} \rangle &\equiv \sum_{\alpha} |C_{\alpha}|^2 A_{\alpha\alpha} \\
\end{aligned}
$$

If a system approaches a steady state, it should be given by $\langle A \rangle$. The system should settle to an appropriate statistical mechanical ensemble

$$
\sum_{\alpha} |C_{\alpha}|^2 A_{\alpha \alpha} = \langle A \rangle_{\text{microcan.}} (E_0)
$$

The E.T.H. gives a possibility for this to happen : $A_{\alpha\alpha} = \langle A \rangle_{\text{microcan.}}(E_0)$

State of the art:

- E.T.H. seems verified for non-integrable systems (plaquette simulations)
- Experimentally, Greiner 2016

The system is globally pure Growth of entanglement The entanglement entropy assumes the role of the « thermal-like » entropy

Why Eigenstate Thermalization Hypothesis is valid remains mysterious

 $A_{\alpha\alpha} = \langle A \rangle_{\text{microcan.}}(E_0)$ **Independent of initial state !!**

What sets to timescale for thermalization? Long-range interacting systems may possess peculiar thermodynamic properties

See T. Dauxois et al. 2002

…

We revisit this physics using a macroscopic ensemble ⁵²Cr of Cr atoms in optical lattices **of Cr atoms in optical lattices**

1- Prepare a unit-filled sample of Cr atoms in a 3D optical lattice

2- Interactions through long-range dipole-dipole interactions

 $H = c_{dd} \sum_{(i,j)} \left[S_i^z S_j^z - \frac{1}{4} (S_i^+, S_j^- + S_i^-, S_j^+) \right] \frac{(1 - 3 \cos^2 \theta_{ij})}{r_{ii}^3}$

Outline:

1- Theoretical introduction to thermalization

- **2- Thermalization of the Zeeman populations**
	- **3- Thermalization of the collective spin**

Lanczos approach to calculate many-body dynamics
\n
$$
T = \sum_{i,j} \alpha_{i,j} \left[S_i^z S_j^z - \frac{1}{4} (S_i^+ S_j^- S_j^+ S_i^-) \right] \qquad \alpha_{i,j} = \frac{1 - 3 \cos \theta_{i,j}^2}{r_{i,j}^3} \qquad \sum_{m_s = -3}^{n_s - 2} \frac{1}{r_0} \qquad \sum_{j=1}^{n_s - 1} \frac{1}{r_0^2}
$$
\n
$$
\Psi_0 = |2,2,2,2,3,\dots,2 \rangle \qquad \overline{I} \longrightarrow \Psi_1 = \sum_{(i,j)} \alpha_{i,j} |2,1,2,2,\dots,2,3,2 \rangle \qquad \overline{I} \longrightarrow \qquad \text{(a)}
$$
\n
$$
|\psi_1'\rangle = T |\psi_0\rangle \qquad \dots \qquad \text{Orthonormalize} \qquad H = \begin{pmatrix} I_0 & \Gamma_0 & 0 & \cdots & 0 \\ \Gamma_0 & I_1 & \Gamma_1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \Gamma_{n-2} & I_{n-1} & \Gamma_{n-1} \\ 0 & \cdots & 0 & \Gamma_{n-1} & I_n \end{pmatrix}
$$

Any many-body problem can be cast into a 1D problem (tri-diagonal matrix) Very few (Lanczos) states are needed to describe the problem (but may be very hard to calculate…)

Dynamics in the Lanczos basis

Natural timescale for thermalization given by

$$
\Gamma_0 = \langle \psi_0 | V_{dd} | \psi_1 \rangle = \frac{\sqrt{60}}{4} \sqrt{\sum_{i,j} \alpha_{i,j}^2}
$$

$$
\Psi_0 = |2, 2, 2, 2, \dots, 2\rangle
$$

Lanczos approach provides an intuitive picture for thermalization

Dynamics at constant magnetization can be seen as a random walk the steady state maximizes entropy at a given magnetization $\rightarrow p_{m_s} \approx e^{\alpha m_s}$

The Lanczos basis can be used to decompose the many-body eigenstates Φ_j that are needed to describe Ψ_0

 $\Phi_i = \sum b^j_k \Psi_k \rightarrow$ provides a justification for ETH ?

Outline:

1- Theoretical introduction to thermalization

- **2- Thermalization of the Zeeman populations**
	- **3- Thermalization of the collective spin**

Quantum thermalization with 10⁴ magnetic atoms

 $\Psi_0 = |3_{\theta}, 3_{\theta}, 3_{\theta}, 3_{\theta}, ..., 3_{\theta}\rangle$

$$
H = c_{dd} \sum_{(i,j)} \left[S_i^z \cdot S_j^z - \frac{1}{4} (S_i^+ \cdot S_j^- + S_i^- \cdot S_j^+) \right] \frac{(1 - 3 \cos^2 \theta_{ij})}{r_{ij}^3}
$$

Experimental results

Short term dynamics of the many-body system

Asymptotic behavior

Take into account energy constraints.

Two contributions for energy

Dipole-dipole interactions

 $\langle \Psi(t) | V_{dd} | \Psi(t) \rangle$

Difficult to calculate except at $t=0$

Tensor light-shift leads to an effective quadratic Zeeman effect

 $E(m_s) = B_Q m_s^2$

This explains why simply maximizing entropy is sufficient at small angles

in agreement with GDTWA simulations (solid lines)

while mean field simulations show revivals at this time scale (dashed lines)

Analytic model for quantum thermalization

Look at the thermal state that corresponds to the initial energy

High-temperature expansion (A.M. Rey)

$$
\hat{\rho} = \exp[-\beta \hat{H}] \approx Id - \beta \hat{H}
$$

Analytically compute <H> (includes $E(m_s) = B_Q m_s^2$ and dipolar interactions)

Use
$$
\langle A \rangle = \frac{Tr[\rho.A]}{Tr[\rho]}
$$

$$
\frac{1}{k_B T} = \frac{5B_Q + 9\overline{V}}{24B_Q^2 + 24V_{eff}^2}
$$
\nwhere: $V_{eff}^2 = \sum V_{(i,j)}^2$ $\overline{V} = \sum V_{(i,j)}^2$

Note that the final probability distribution is that of non-interacting particles!.... An effective temperature (a few nK) for an isolated system

NB: the agreement between experiment and theory shows how little heating there is.

Outline:

1- Theoretical introduction to thermalization

- **2- Thermalization of the Zeeman populations**
	- **3- Thermalization of the collective spin**

Measuring the collective spin through Ramsey interferometry

 $\ell = \sqrt{\langle S_x \rangle^2 + \langle S_y \rangle^2 + \langle S_z \rangle^2}$

Data analysis: measure collective spins from probability distributions

$$
\ell = \sqrt{\langle S_x \rangle^2 + \langle S_y \rangle^2 + \langle S_z \rangle^2}
$$

Assume ℓ =0, and Gaussian noise:

Method to derive *ℓ*: fit probability distributions with a convolution of the two distributions

Damping of the collective spin due to dipolar interactions

Good agreement at short times Good agreement with second-order perturbation theory too

Hazzard et al., PRL **110**, 075301 (2013)

Note that the damping of the spin is a purely dipolar beyond mean-field effect for a homogeneous system, associated with the growth of entanglement

Damping of the collective spin due to dipolar interactions

Good agreement at short times Good agreement with second-order perturbation theory too

At long times, the collective spin decays **SLOWER** than it should !!

Partial conclusions on the collective spin measurements

Strong decay of collective spin, associated with dipole-dipole interactions

The decays is « too » slow.

- \rightarrow heating in the lattice ?
- \rightarrow Are there more holes than we thought ?
- \rightarrow effect of losses ?
- \rightarrow more subtle effect associated with possibly disorder ?

(see glassy dynamics observed with Rydberg atoms arXiv:1909.11959)

Technical noise leads to **slower** *decay of the contrast !*

The measurement of coherences (the contrast of the interferometer) gives access to information we could not reach by simply measuring populations.

NB:
$$
\sqrt{\langle S_x \rangle^2 + \langle S_y \rangle^2 + \langle S_z \rangle^2}\Big|_{t\to\infty} \approx 0
$$
 can be related to $P_{ms} = \frac{1}{7} \left(1 + \beta B_Q (4 - m_s^2) \right) \approx exp[-\beta B_Q m_s^2]$
At equilibrium, the strongly interacting many-body system looks like a non-interacting one !

Spin-length data with and without lattice

Collective spin length $\sqrt{\langle S_x \rangle^2 + \langle S_y \rangle^2 + \langle S_z \rangle^2}$ from Ramsey interferometer

Lattice case : decrease of spin length due to dipolar interactions

Bulk case :

Spins remain almost locked despite magnetic field gradient

preservation of ferromagnetism

With and without lattice: the main difference (Lanczos approach)

Lattice case:

\n
$$
H_{dd} = -\frac{1}{2}S'_{x}.S'_{x} - \frac{3}{8}(S'^{+}S'^{+} + S'^{-}S'^{-}) + \frac{1}{8}[(S'^{+}S'^{-} + S'^{-}S'^{+})]
$$
\n
$$
\Psi_{0} = |3_{x}, 3_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n
$$
\mathbf{F} = \sum_{(i,j)} |3_{x}, 2_{x}, 3_{x}, ..., 3_{x}\rangle
$$
\n<

In the BEC case, protection of ferromagnetism after the quench due to a spin gap

Quench results in the excitation of trapped of magnon mode (and the retardation of thermalization)

PRL 121, 013201 (2018)

In a lattice

Many-body dynamics Quantum Thermalization

In the BEC phase

BEC is trapped near an energy maximum. It behaves like a ferrofluid Collective modes are observed

Nature Comm. **10**, 1714 (2019) arXiv:2005.13487 (2020)

GDTWA

 -1

 Ω

 m_S

 0.2

 $1/7$ $\mathbb{\overset{\circ}{\mathfrak{g}}_{0.1}}$

 $\overline{0}$

 -3

 -2

Phys. Rev. Lett. 121, 013201 (2018)

The routes and timescales to quantum thermalization can be vastly different. The Lanczos approach and perturbation theory may help building an intuition.

Conclusions

S. Lepoutre, L. Gabardos (PhD) Youssef Aziz Alaoui

B. Laburthe-Tolra, O. Gorceix, E. Maréchal, L. Vernac, M. Robert-de-St-Vincent, **K. Kechadi (PhD)**, P. Pedri

A. M. Rey, J. Schachenmayer, B. Zhu, B. Blakie, Petra Fersterer, Arghavan Safavi-Naini, T. Roscilde

CEFIPRA

!! Thank you !! !! Open post-doc position !!

Outlook : Quantum thermalization, entanglement

Reduced density matrix (isolate one spin and trace over the rest of the system)

!! However still a pure state !!

Future: measure bi-partite fluctuations (double-well lattice) entanglement witness ? (T. Roscilde)