Some experimental aspects of quantum simulation using ultra-cold atoms Bruno Laburthe-Tolra Paris 13 University

Focus on quantum magnetism

Practical implementations State of the art, some challenges Some possible extensions 1 Quantum simulation with cold atoms ?

Quantum Gases

Collective behaviour even without interactions

Optical lattices

Perriodic potential introduced by stationnary wave (spin-independent)

z

х

 $\lambda/2$

1D lattices \rightarrow 2D Gases (BKT transition) 2D lattices \rightarrow 1D Gases (fluctuations, correlations) 3D lattices \rightarrow Strongly correlated systems

Magnetism driven by super-exchange interactions

Condensed-matter: effective spin-spin interactions arise due to exchange interactions (Coulomb)

Heisenberg model of magnetism (real spins, effective spin-spin interaction) (↔Hubbard model at half-filling)

Ising Exchange

Cold atoms: effective spin-spin interactions arise due to exchange interactions (Van-der-Waals)

Two types of interactions

(only few experiments worldwide with non-negligible dipolar interactions - Stuttgart, Paris, Innsbruck, Stanford, Boulder, Boston, Hong-Kong,...)

Cold atoms offer to revisit paradigms from solid-state physics experimentally.

!!! The Hubbard model is only an approximate Hamiltonian !!! (dipolar interactions, density-assisted tunneling...)

$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U_{c} \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + \frac{V_{c}}{2} \sum_{\langle i,j \rangle} \hat{n}_{i} \hat{n}_{j}$$
$$- T \sum_{\langle i,j \rangle,\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} (\hat{n}_{i,-\sigma} + \hat{n}_{j,-\sigma}) + \frac{P}{2} \sum_{\langle i,j \rangle} \hat{c}_{i}^{\dagger 2} \hat{c}_{j}^{2},$$

See Lewenstein Rep. Prog. Phys. 78, 066001 (2015)

2- Platforms, possibilities, and challenges

Cold atoms revisit (quantum) magnetism

Atoms in periodic potentials

Interacting spin-less bosons (effective spin encoded in orbital degrees of freedom) Greiner: Anti-ferromagnetic (pseudo-)spin chains I. Bloch, Sengstock,...

Spin ¹/₂ interacting Fermions or Bosons

Super-exchange interaction

Esslinger, Hulet, Bloch, Greiner, Zwierlein, Kohl,...: (short range) anti-correlations T. Porto, W. Ketterle,...

Trapped ions spin lattice models with effective long-range interactions (couple spins to mode) (few tens of ions) C. Monroe, R. Blatt

Dipolar particles

long range spin-spin interactions

Molecules with electric dipole moment (Jin/Ye)

Rydberg atoms with electric dipole moment (Browaeys...) (few tens of atoms)

Magnetic atoms with magnetic dipole moment (Villetaneuse, Innsbruck)

One can use lattice with tunable topology, using « simple » beam arrangements

Esslinger

Stamper-Kurn – Kagomé

Sengstock - Triangular

Bloch, Porto – double wells

Site-resolved imaging, and many-body physics

Measure each site independently (Bloch, Greiner, Zwierlein, Köhl,...)

Procedure : raise lattice depth and illuminate

Not easy to get spin sensitivity

Not easy to get very high super-exchange interactions (λ) $\Gamma = -\frac{t^2}{U}$

Bosons and Fermions !

Site-resolved imaging, and many-body physics

Example: the SF-Mott transition seen atom by atom...

Other examples include : Many-body localization (Bloch), artificial gauge fields (Bloch, Ketterle, Sengstock), transport, ...

Huge theoretical tasks ahead !

- How to characterize a many-body system ? (limits of quantum tomography)

Observation of anti-ferromagnetic correlations of s=1/2 fermions

Theoretically difficult

M. Greiner's experiment

!! Ground state at half filling is the lowest energy singlet state # Néel state **!!**

Quantum magnetism with cold atoms: the challenge of entropy

State of the art: - it is relatively easy to have a Mott insulator with one atom per site. - spin entropy is still close to Log(2). No direct way to cool the spin! $\Gamma \propto \frac{t^2}{U}$ Usual strategy relies on super-exchange $\Gamma \propto \frac{t^2}{U}$ (VERY long)

Quantum magnetism with cold atoms: the challenge of total spin

Most (optical) traps and lattices are spin-independent

Conservation Laws !

Initially, total spin of a mixture of $N_{\uparrow} + N_{\downarrow} = N$ atoms

Total spin is $\propto \sqrt{N}$

How can you reach the singlet many-body state ????

Evacuate entropy ?

(plays with local density of states)

Spin-orbit-coupling ?

How to cool in the lattice ?

Requires spin-orbit coupling ! Spin-orbit can arise from atom-atom interactions (anisotropy is needed : dipole-dipole interactions are good !)

Spin orbit coupling

→ Can be arbitrarily engineered « Usually » no anisotropy in ground state

- → Use spin-orbit coupling in excited states, and optically dress
- → Narrow transitions allow to do this without too much heating

Spin-orbit coupling opens possibilities to adiabatically engineer the ground state see PRL 107, 165301 (2011)

3- Beyond s=1/2

Atoms are composite objects, whose spin can be larger than 1/2

F = S + I

New opportunities thanks to the atomic structure

Already mentionned: spin-orbit coupling

Articifial gauge fields

 \leftrightarrow

Huge effective magnetic fields (Spielman, Ketterle, Bloch, Esslinger, Sengstock...)

New opportunities thanks to the atomic structure

Fermionic Sr or Yb isotope in the ground state: SU(N) symmetry

Spin entirely due to nucleus

Spin-independent interactions

One obvious consequence : non spin-exchange dynamics

- Can prepare arbitrary number of « colours » in the system.

(see Bloch, Fallani, Takahashi, Schreck)

(New project at LPL !)

⁸⁷Sr

F=9/2

Proposal : interplay between SU(N) magnetism and lattice topology

Reminder: SU(2) case. Two atoms in different states can reduce their energy by tunneling

SU(N) symmetry introduces large degeneracies in gound state; Possibilities of spin liquids; one singlet takes N atoms !

4- Example of dipolar magnetism

Unusually large dipolar interactions due to large electronic spin

!!! Non-Heisenberg !!! Anisotropy !!! Long Range !!! Large Spin !!!

This Experiment

After tilting the spin: from classical to quantum

Prediction (Ana Maria Rey):

 θ small \rightarrow classical precession θ large \rightarrow entanglement grows See also E. Witkowska, PRA 93, 023627 (2016)

After tilting the spin: from classical to quantum

Interpretation: dynamics comes from the **difference** to the Heisenberg Hamiltonian

$$S_{1z}S_{2z} + \frac{1}{2}(S_{1+}S_{2-} + S_{1-}S_{2+})$$

SU(2) symmetric Heisenberg Hamiltonian would introduce no spin dynamics after rf pulse

Dynamics associated to:

$$\delta H \propto S_{1z} S_{2z} \underset{t \to 0}{\approx} S_z^2$$

Squeezing
$$\leftrightarrow$$
 Variance (S_z)

Experimental results...

How to *experimentally* characterize the growth of entanglement?

1- Entanglement witness based on measurements of global spin variables.

(e.g. $(\Delta S_x)^2 + (\Delta S_y)^2 + (\Delta S_z)^2 \ge N/2$ for any mixture of separable states)

!!! Beware of large spin systems !!!
(i.e. squeezing is not an EW) – See G. Toth -

1-bis – Measure length of collective spin (on going)

2- Measure the entropy associated to entanglement

$$\frac{1}{\sqrt{2}} \left(|m_s| = 1, m_s = -1 \right) + |m_s| = -1, m_s = 1 \right) = \text{PURE STATE}$$

But measurement performed in just one lattice site will show random fluctuations ($|m_s = \pm 1\rangle$) \rightarrow associated entropy

!!! Difficulty to warrant purity for large systems **!!!** (Loschmidt echo ?)

Calculated growth of entanglement

Renyi entanglement entropy (NOT measured here)

??? How to characterize purity in a large system ??? « Measured » diagonal entropy (NOT a proof of entanglement !)

(assumes homogeneity)

arXiv:1803.02628

Direct access to many-body physics ! Interest of out-of-equilibrium approaches (no issue with entropy – **However limited timescale !!**) - In lattices, beyond mean-field physics is seen at large tilting angles

...in the regime where theories still keep up with experiments...

No theoretical model available at intermediate lattice depths, where transport and magnetism compete

- On going collaboration with A. M. Rey, B. Zhu, B. Blakie

-Main messages:

- Many experimental platforms

(long-range interactions, short range interactions, geometry)

- Ground state properties remain difficult from the experimental standpoint (need spin-orbit coupling / other cooling schemes)
- Out of equilibrium dynamics provides a new way to probe strongly correlated systems (a novelty allowed by long timescales in cold atom physics)
 - Huge tasks ahead for the full characterization of many-body systems (entanglement, purity...)

- There is more in atoms than s=1/2

(large spin magnetism, spin-orbit coupling) \rightarrow beyond quantum simulation

<u>arXiv:1803.10663</u> (2018) (dissipative cooling) <u>arXiv:1803.02628</u> (2018) (lattice models) S. Lepoutre, L. Gabardos (PhD), B. Naylor (PhD)
B. Laburthe-Tolra, O. Gorceix, E. Maréchal, L. Vernac, M. Robert-de-St-Vincent,
K. Kechadi (PhD), P. Pedri

A. M. Rey, J. Schachenmayer, B. Zhu,

Large Spin physics with Chromium... and Strontium coming up.

Experimental protocol

Thermalization of an isolated quantum system

How to measure purity ? \rightarrow Loschmidt echo ? (H \rightarrow -H)

Eigenstate thermalization hypothesis ?

Direct access to many-body physics ! Interest of out-of-equilibrium approaches (no issue with entropy – **However limited timescale !!**) **Control of interactions : Feshbach resonances**

Control of a(B) (scattering length) $(-\infty, +\infty)$

Spin dynamics and beyond mean-field effects

Spin dynamics generates entanglement. squeezing (atom interferometry, EPR...)

$$|0,0\rangle \leftrightarrow \frac{1}{\sqrt{2}} (|1,-1\rangle + |-1,1\rangle)$$

Karsten Klemt, M. Chapman

and Quadratic Zeeman effect)

Stamper-Kurn, Lett, Gerbier

New Nematic phases (the spin does not point a well-defined position)

Quench through phase transitions

Here, generation of topological defects

0

Stamper-Kurn

Domains, spin textures, spin waves, topological states

Towards « non-classical » spinor phases ? What is the true nature of the ground state

$$|SC\rangle = \frac{1}{\sqrt{N!}} \left(\sqrt{\frac{N_1}{N}} a_1^{\dagger} + e^{i\chi} \sqrt{\frac{N_{-1}}{N}} a_{-1}^{\dagger} \right)^N |\text{vac}\rangle$$

a2>a0: Possibility of singlet condensates

$$\Theta^{+} = -2a_{1}^{+}a_{-1}^{+} + a_{0}^{+^{2}}$$
$$\left|PC\right\rangle = \left(\Theta^{+}\right)^{N/2} \left|vac\right\rangle$$

Creates a pair

Pair condensate is the real ground state !

a2<a0: Ferromagnetic; Spontaneous symmetry breaking

See Bigelow 1998 ; Ho 2000

A side-slide, on the beauty of perturbative equations

BEC, ferrofluid

Lattice, correlated

$$\frac{p_{m_s}(t)}{p_{m_s}(0)} = 1 + \left(\frac{g\mu_B b}{2Mw}\right)^2 \left(m_s^2 - \sum_{m_{s'}} m_{s'}^2 p_{m'_s}(0)\right) t^4$$

$$p_{m_s}(t) = p_{m_s}(0) + \alpha_m \sum_i V_{dd}^2(r_i) t^2$$

$$\alpha_m = 135/512(1,2,-1,-4,-1,2,1)$$

The entropy for quantum degeneracy

Entropy of a thermal (classical) gas

$$S / N \approx -k_B \operatorname{Log}(n\Lambda^3)$$

(Phase space density measures number of available states, hence entropy.)

Major consequence:

BEC occurs for a fixed entropy per particle (independent of temperature)

$$T_c \approx N^{1/3} \eta \overline{\omega} \quad \longleftrightarrow \quad S_c / N \approx k_B$$

Entropy of a saturated Bose cloud (3D):

$$S/N \approx 3.6k_B \left(\frac{T}{T_c}\right)^3 = 3.6k_B f_{th}$$

For a fully saturated gas, the entropy is given by the condensate fraction. **Entropy of a degenerate Fermi gas:**

$$S/N \approx \pi^2 k_B \left(\frac{T}{T_F}\right)$$

Quantum magnetism, some paradigms from solid-state physics Strongly correlated (s=1/2) electrons

Condensed matter physics \leftrightarrow **many-body quantum physics**

Heavy fermions (Kondo physics), anomalous superconductivity

Cooling schemes and limitations

Magnetic atoms

Rydberg Atoms

LPL - Paris

 $\alpha S_{1z} S_{2z} + \beta \frac{1}{2} (S_{1+} S_{2-} + S_{1-} S_{2+})$

Orsay

Boulder

Control of Hamiltonian

Control of Hamiltonian And geometry individual adressing

Optical dipole traps equally trap all Zeeman state of a same atom (AC Stark shift)

How to measure?

Stern-Gerlach separation: (magnetic field gradient)

(can be (rather poorly) resolved spatially if separation is fast compared to expansion) (destructive)

One proposal: use tensor light shift at adiabatically engineer singlet ground state.

Similar to PRL 107, 165301 (2011)

Effect of interactions on condensates, cold atoms vs condensed matter

Attractive interactions

Implosion of BEC for large atom number

Small solitons

ENS, Rice...

Repulsive interactions

Stable condensate Phonon spectrum

Superfluidity ENS, JILA, MIT...

Abrikosov lattice in type II superconductors

Spin dependent interactions

Magnetism

ENS, Berkeley...